Changes between Version 3 and Version 4 of Ticket #12427, comment 28


Ignore:
Timestamp:
2016-01-26T12:02:44+01:00 (10 years ago)
Author:
cmuelle8

Legend:

Unmodified
Added
Removed
Modified
  • Ticket #12427, comment 28

    v3 v4  
    77 ''A  geodesic  is  the  natural  “straight  line”,  defined as '''the''' line of minimum curvature,  for  the  surface  of  the  earth (Hilbert and Cohn-Vossen,  1952,  pp.  220–222).''
    88
    9 A geodesic is '''''a''' line of minimum curvature'' would fit the case for ellipsoids much better. Having two disjunct geodesics between arbitrary two points is a common case, having single or infinite ones rarer cases.
     9A geodesic is '''''a''' line of minimum curvature'' would fit the case for ellipsoids much better. Having two disjunct geodesics between two points is among the common cases. Having infinite geodesics is true for the poles.
    1010
    1111It also has a nice Appendix, pp.24 continuing. E.g. ''Appendix C: Area of a spherical polygon''.  Or ''Appendix A: Equations for a geodesic'', quote: