Changeset 2789 in josm for trunk/src/org/openstreetmap/josm/data
- Timestamp:
- 2010-01-09T15:49:04+01:00 (15 years ago)
- Location:
- trunk/src/org/openstreetmap/josm/data/projection
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/src/org/openstreetmap/josm/data/projection/LambertEST.java
r2516 r2789 58 58 } 59 59 60 public IterateAngle(double e, double t)60 public static double iterateAngle(double e, double t) 61 61 { 62 62 double a1 = 0.0; … … 88 88 double theta = Math.atan((p.getX() - ef) / (rf - p.getY() + nf)); 89 89 double y = (theta / n + lonf) ; 90 double x = (IterateAngle(ee, T));90 double x = iterateAngle(ee, T); 91 91 return new LatLon(Math.toDegrees(x),Math.toDegrees(y)); 92 92 } -
trunk/src/org/openstreetmap/josm/data/projection/Puwg.java
r2676 r2789 46 46 double scale = z.getPuwgScaleFactor(); 47 47 double center = z.getPuwgCentralMeridian(); /* in radians */ 48 EastNorth a = MapLatLonToXY(Math.toRadians(p.lat()), Math.toRadians(p.lon()), center);48 EastNorth a = mapLatLonToXY(Math.toRadians(p.lat()), Math.toRadians(p.lon()), center); 49 49 return new EastNorth(a.east() * scale + easting, a.north() * scale + northing); 50 50 } … … 57 57 double scale = z.getPuwgScaleFactor(); 58 58 double center = z.getPuwgCentralMeridian(); /* in radians */ 59 return MapXYToLatLon((p.east() - easting)/scale, (p.north() - northing)/scale, center);59 return mapXYToLatLon((p.east() - easting)/scale, (p.north() - northing)/scale, center); 60 60 } 61 61 -
trunk/src/org/openstreetmap/josm/data/projection/UTM.java
r2516 r2789 12 12 import javax.swing.JPanel; 13 13 14 import org.openstreetmap.josm.Main;15 14 import org.openstreetmap.josm.data.Bounds; 16 15 import org.openstreetmap.josm.data.coor.EastNorth; … … 29 28 private int zone = DEFAULT_ZONE; 30 29 31 final private double UTMScaleFactor = 0.9996; 30 final private static double UTMScaleFactor = 0.9996; 32 31 33 32 /* Ellipsoid model constants (WGS84) - TODO Use Elliposid class here too */ 34 final private double sm_EccSquared = 6.69437999013e-03; 33 //final private double sm_EccSquared = 6.69437999013e-03; 35 34 36 35 /* 37 * ArcLengthOfMeridian 38 * 39 * Computes the ellipsoidal distance from the equator to a point at a 40 * given latitude. 41 * 42 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 43 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 44 * 45 * Inputs: 46 * phi - Latitude of the point, in radians. 47 * 48 * Globals: 49 * Ellipsoid.GRS80.a - Ellipsoid model major axis. 50 * Ellipsoid.GRS80.b - Ellipsoid model minor axis. 51 * 52 * Returns: 53 * The ellipsoidal distance of the point from the equator, in meters. 54 * 55 */ 36 * ArcLengthOfMeridian 37 * 38 * Computes the ellipsoidal distance from the equator to a point at a 39 * given latitude. 40 * 41 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 42 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 43 * 44 * Inputs: 45 * phi - Latitude of the point, in radians. 46 * 47 * Globals: 48 * Ellipsoid.GRS80.a - Ellipsoid model major axis. 49 * Ellipsoid.GRS80.b - Ellipsoid model minor axis. 50 * 51 * Returns: 52 * The ellipsoidal distance of the point from the equator, in meters. 53 * 54 */ 56 55 private double ArcLengthOfMeridian(double phi) 57 56 { … … 61 60 /* Precalculate alpha */ 62 61 double alpha = ((Ellipsoid.GRS80.a + Ellipsoid.GRS80.b) / 2.0) 63 62 * (1.0 + (Math.pow (n, 2.0) / 4.0) + (Math.pow (n, 4.0) / 64.0)); 64 63 65 64 /* Precalculate beta */ 66 65 double beta = (-3.0 * n / 2.0) + (9.0 * Math.pow (n, 3.0) / 16.0) 67 66 + (-3.0 * Math.pow (n, 5.0) / 32.0); 68 67 69 68 /* Precalculate gamma */ 70 69 double gamma = (15.0 * Math.pow (n, 2.0) / 16.0) 71 70 + (-15.0 * Math.pow (n, 4.0) / 32.0); 72 71 73 72 /* Precalculate delta */ 74 73 double delta = (-35.0 * Math.pow (n, 3.0) / 48.0) 75 74 + (105.0 * Math.pow (n, 5.0) / 256.0); 76 75 77 76 /* Precalculate epsilon */ … … 81 80 return alpha 82 81 * (phi + (beta * Math.sin (2.0 * phi)) 83 + (gamma * Math.sin (4.0 * phi)) 84 + (delta * Math.sin (6.0 * phi)) 85 + (epsilon * Math.sin (8.0 * phi))); 82 + (gamma * Math.sin (4.0 * phi)) 83 + (delta * Math.sin (6.0 * phi)) 84 + (epsilon * Math.sin (8.0 * phi))); 86 85 } 87 86 88 87 /* 89 * UTMCentralMeridian 90 * 91 * Determines the central meridian for the given UTM zone. 92 * 93 * Inputs: 94 * zone - An integer value designating the UTM zone, range [1,60]. 95 * 96 * Returns: 97 * The central meridian for the given UTM zone, in radians, or zero 98 * if the UTM zone parameter is outside the range [1,60]. 99 * Range of the central meridian is the radian equivalent of [-177,+177]. 100 * 101 */ 88 * UTMCentralMeridian 89 * 90 * Determines the central meridian for the given UTM zone. 91 * 92 * Inputs: 93 * zone - An integer value designating the UTM zone, range [1,60]. 94 * 95 * Returns: 96 * The central meridian for the given UTM zone, in radians, or zero 97 * if the UTM zone parameter is outside the range [1,60]. 98 * Range of the central meridian is the radian equivalent of [-177,+177]. 99 * 100 */ 102 101 private double UTMCentralMeridian(int zone) 103 102 { … … 110 109 111 110 /* 112 * FootpointLatitude 113 * 114 * Computes the footpoint latitude for use in converting transverse 115 * Mercator coordinates to ellipsoidal coordinates. 116 * 117 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 118 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 119 * 120 * Inputs: 121 * y - The UTM northing coordinate, in meters. 122 * 123 * Returns: 124 * The footpoint latitude, in radians. 125 * 126 */ 111 * FootpointLatitude 112 * 113 * Computes the footpoint latitude for use in converting transverse 114 * Mercator coordinates to ellipsoidal coordinates. 115 * 116 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 117 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 118 * 119 * Inputs: 120 * y - The UTM northing coordinate, in meters. 121 * 122 * Returns: 123 * The footpoint latitude, in radians. 124 * 125 */ 127 126 private double FootpointLatitude(double y) 128 127 { … … 133 132 /* (Same as alpha in Eq. 10.17) */ 134 133 double alpha_ = ((Ellipsoid.GRS80.a + Ellipsoid.GRS80.b) / 2.0) 135 134 * (1 + (Math.pow (n, 2.0) / 4) + (Math.pow (n, 4.0) / 64)); 136 135 137 136 /* Precalculate y_ (Eq. 10.23) */ … … 140 139 /* Precalculate beta_ (Eq. 10.22) */ 141 140 double beta_ = (3.0 * n / 2.0) + (-27.0 * Math.pow (n, 3.0) / 32.0) 142 141 + (269.0 * Math.pow (n, 5.0) / 512.0); 143 142 144 143 /* Precalculate gamma_ (Eq. 10.22) */ 145 144 double gamma_ = (21.0 * Math.pow (n, 2.0) / 16.0) 146 145 + (-55.0 * Math.pow (n, 4.0) / 32.0); 147 146 148 147 /* Precalculate delta_ (Eq. 10.22) */ 149 148 double delta_ = (151.0 * Math.pow (n, 3.0) / 96.0) 150 149 + (-417.0 * Math.pow (n, 5.0) / 128.0); 151 150 152 151 /* Precalculate epsilon_ (Eq. 10.22) */ … … 155 154 /* Now calculate the sum of the series (Eq. 10.21) */ 156 155 return y_ + (beta_ * Math.sin (2.0 * y_)) 157 158 159 156 + (gamma_ * Math.sin (4.0 * y_)) 157 + (delta_ * Math.sin (6.0 * y_)) 158 + (epsilon_ * Math.sin (8.0 * y_)); 160 159 } 161 160 162 161 /* 163 * MapLatLonToXY 164 * 165 * Converts a latitude/longitude pair to x and y coordinates in the 166 * Transverse Mercator projection. Note that Transverse Mercator is not 167 * the same as UTM; a scale factor is required to convert between them. 168 * 169 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 170 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 171 * 172 * Inputs: 173 * phi - Latitude of the point, in radians. 174 * lambda - Longitude of the point, in radians. 175 * lambda0 - Longitude of the central meridian to be used, in radians. 176 * 177 * Outputs: 178 * xy - A 2-element array containing the x and y coordinates 179 * of the computed point. 180 * 181 * Returns: 182 * The function does not return a value. 183 * 184 */ 185 public EastNorth MapLatLonToXY(double phi, double lambda, double lambda0)162 * MapLatLonToXY 163 * 164 * Converts a latitude/longitude pair to x and y coordinates in the 165 * Transverse Mercator projection. Note that Transverse Mercator is not 166 * the same as UTM; a scale factor is required to convert between them. 167 * 168 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 169 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 170 * 171 * Inputs: 172 * phi - Latitude of the point, in radians. 173 * lambda - Longitude of the point, in radians. 174 * lambda0 - Longitude of the central meridian to be used, in radians. 175 * 176 * Outputs: 177 * xy - A 2-element array containing the x and y coordinates 178 * of the computed point. 179 * 180 * Returns: 181 * The function does not return a value. 182 * 183 */ 184 public EastNorth mapLatLonToXY(double phi, double lambda, double lambda0) 186 185 { 187 186 /* Precalculate ep2 */ … … 197 196 double t = Math.tan (phi); 198 197 double t2 = t * t; 199 double tmp = (t2 * t2 * t2) - Math.pow (t, 6.0);200 198 201 199 /* Precalculate l */ … … 211 209 212 210 double l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 213 211 - 58.0 * t2 * nu2; 214 212 215 213 double l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 216 214 - 330.0 * t2 * nu2; 217 215 218 216 double l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2); … … 221 219 222 220 return new EastNorth( 223 /* Calculate easting (x) */ 224 N * Math.cos (phi) * l 225 + (N / 6.0 * Math.pow (Math.cos (phi), 3.0) * l3coef * Math.pow (l, 3.0)) 226 + (N / 120.0 * Math.pow (Math.cos (phi), 5.0) * l5coef * Math.pow (l, 5.0)) 227 + (N / 5040.0 * Math.pow (Math.cos (phi), 7.0) * l7coef * Math.pow (l, 7.0)), 228 /* Calculate northing (y) */ 229 ArcLengthOfMeridian (phi) 230 + (t / 2.0 * N * Math.pow (Math.cos (phi), 2.0) * Math.pow (l, 2.0)) 231 + (t / 24.0 * N * Math.pow (Math.cos (phi), 4.0) * l4coef * Math.pow (l, 4.0)) 232 + (t / 720.0 * N * Math.pow (Math.cos (phi), 6.0) * l6coef * Math.pow (l, 6.0)) 233 + (t / 40320.0 * N * Math.pow (Math.cos (phi), 8.0) * l8coef * Math.pow (l, 8.0))); 221 /* Calculate easting (x) */ 222 N * Math.cos (phi) * l 223 + (N / 6.0 * Math.pow (Math.cos (phi), 3.0) * l3coef * Math.pow (l, 3.0)) 224 + (N / 120.0 * Math.pow (Math.cos (phi), 5.0) * l5coef * Math.pow (l, 5.0)) 225 + (N / 5040.0 * Math.pow (Math.cos (phi), 7.0) * l7coef * Math.pow (l, 7.0)), 226 /* Calculate northing (y) */ 227 ArcLengthOfMeridian (phi) 228 + (t / 2.0 * N * Math.pow (Math.cos (phi), 2.0) * Math.pow (l, 2.0)) 229 + (t / 24.0 * N * Math.pow (Math.cos (phi), 4.0) * l4coef * Math.pow (l, 4.0)) 230 + (t / 720.0 * N * Math.pow (Math.cos (phi), 6.0) * l6coef * Math.pow (l, 6.0)) 231 + (t / 40320.0 * N * Math.pow (Math.cos (phi), 8.0) * l8coef * Math.pow (l, 8.0))); 234 232 } 235 233 236 234 /* 237 * MapXYToLatLon 238 * 239 * Converts x and y coordinates in the Transverse Mercator projection to 240 * a latitude/longitude pair. Note that Transverse Mercator is not 241 * the same as UTM; a scale factor is required to convert between them. 242 * 243 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 244 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 245 * 246 * Inputs: 247 * x - The easting of the point, in meters. 248 * y - The northing of the point, in meters. 249 * lambda0 - Longitude of the central meridian to be used, in radians. 250 * 251 * Outputs: 252 * philambda - A 2-element containing the latitude and longitude 253 * in radians. 254 * 255 * Returns: 256 * The function does not return a value. 257 * 258 * Remarks: 259 * The local variables Nf, nuf2, tf, and tf2 serve the same purpose as 260 * N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect 261 * to the footpoint latitude phif. 262 * 263 * x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and 264 * to optimize computations. 265 * 266 */ 267 public LatLon MapXYToLatLon(double x, double y, double lambda0)235 * MapXYToLatLon 236 * 237 * Converts x and y coordinates in the Transverse Mercator projection to 238 * a latitude/longitude pair. Note that Transverse Mercator is not 239 * the same as UTM; a scale factor is required to convert between them. 240 * 241 * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 242 * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994. 243 * 244 * Inputs: 245 * x - The easting of the point, in meters. 246 * y - The northing of the point, in meters. 247 * lambda0 - Longitude of the central meridian to be used, in radians. 248 * 249 * Outputs: 250 * philambda - A 2-element containing the latitude and longitude 251 * in radians. 252 * 253 * Returns: 254 * The function does not return a value. 255 * 256 * Remarks: 257 * The local variables Nf, nuf2, tf, and tf2 serve the same purpose as 258 * N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect 259 * to the footpoint latitude phif. 260 * 261 * x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and 262 * to optimize computations. 263 * 264 */ 265 public LatLon mapXYToLatLon(double x, double y, double lambda0) 268 266 { 269 267 /* Get the value of phif, the footpoint latitude. */ … … 272 270 /* Precalculate ep2 */ 273 271 double ep2 = (Math.pow (Ellipsoid.GRS80.a, 2.0) - Math.pow (Ellipsoid.GRS80.b, 2.0)) 274 272 / Math.pow (Ellipsoid.GRS80.b, 2.0); 275 273 276 274 /* Precalculate cos (phif) */ … … 325 323 326 324 return new LatLon( 327 /* Calculate latitude */ 328 Math.toDegrees( 329 phif + x2frac * x2poly * (x * x) 330 + x4frac * x4poly * Math.pow (x, 4.0) 331 + x6frac * x6poly * Math.pow (x, 6.0) 332 + x8frac * x8poly * Math.pow (x, 8.0)), 333 Math.toDegrees( 334 /* Calculate longitude */ 335 lambda0 + x1frac * x 336 + x3frac * x3poly * Math.pow (x, 3.0) 337 + x5frac * x5poly * Math.pow (x, 5.0) 338 + x7frac * x7poly * Math.pow (x, 7.0))); 325 /* Calculate latitude */ 326 Math.toDegrees( 327 phif + x2frac * x2poly * (x * x) 328 + x4frac * x4poly * Math.pow (x, 4.0) 329 + x6frac * x6poly * Math.pow (x, 6.0) 330 + x8frac * x8poly * Math.pow (x, 8.0)), 331 Math.toDegrees( 332 /* Calculate longitude */ 333 lambda0 + x1frac * x 334 + x3frac * x3poly * Math.pow (x, 3.0) 335 + x5frac * x5poly * Math.pow (x, 5.0) 336 + x7frac * x7poly * Math.pow (x, 7.0))); 339 337 } 340 338 341 339 public EastNorth latlon2eastNorth(LatLon p) { 342 EastNorth a = MapLatLonToXY(Math.toRadians(p.lat()), Math.toRadians(p.lon()), UTMCentralMeridian(getzone()));340 EastNorth a = mapLatLonToXY(Math.toRadians(p.lat()), Math.toRadians(p.lon()), UTMCentralMeridian(getzone())); 343 341 return new EastNorth(a.east() * UTMScaleFactor + 3500000.0, a.north() * UTMScaleFactor); 344 342 } 345 343 346 344 public LatLon eastNorth2latlon(EastNorth p) { 347 return MapXYToLatLon((p.east()-3500000.0)/UTMScaleFactor, p.north()/UTMScaleFactor, UTMCentralMeridian(getzone()));345 return mapXYToLatLon((p.east()-3500000.0)/UTMScaleFactor, p.north()/UTMScaleFactor, UTMCentralMeridian(getzone())); 348 346 } 349 347 … … 414 412 { 415 413 zone = Integer.parseInt(s); 416 if(zone <= 0 || zone > 60) 414 if(zone <= 0 || zone > 60) { 417 415 zone = DEFAULT_ZONE; 416 } 418 417 break; 419 418 } … … 430 429 int zoneval = Integer.parseInt(zonestring); 431 430 if(zoneval > 0 && zoneval <= 60) 432 {433 431 return Collections.singleton(zonestring); 434 }435 432 } catch(NumberFormatException e) {} 436 433 }
Note:
See TracChangeset
for help on using the changeset viewer.