| 1 | // License: GPL v3 or later courtesy of author Kevin Wayne
|
|---|
| 2 | package edu.princeton.cs.algs4;
|
|---|
| 3 |
|
|---|
| 4 | /*************************************************************************
|
|---|
| 5 | * Compilation: javac AssignmentProblem.java
|
|---|
| 6 | * Execution: java AssignmentProblem N
|
|---|
| 7 | * Dependencies: DijkstraSP.java DirectedEdge.java
|
|---|
| 8 | *
|
|---|
| 9 | * Solve an N-by-N assignment problem in N^3 log N time using the
|
|---|
| 10 | * successive shortest path algorithm.
|
|---|
| 11 | *
|
|---|
| 12 | * Remark: could use dense version of Dijsktra's algorithm for
|
|---|
| 13 | * improved theoretical efficiency of N^3, but it doesn't seem to
|
|---|
| 14 | * help in practice.
|
|---|
| 15 | *
|
|---|
| 16 | * Assumes N-by-N cost matrix is nonnegative.
|
|---|
| 17 | *
|
|---|
| 18 | *
|
|---|
| 19 | *********************************************************************/
|
|---|
| 20 |
|
|---|
| 21 | public class AssignmentProblem {
|
|---|
| 22 | private static final int UNMATCHED = -1;
|
|---|
| 23 |
|
|---|
| 24 | private int N; // number of rows and columns
|
|---|
| 25 | private double[][] weight; // the N-by-N cost matrix
|
|---|
| 26 | private double[] px; // px[i] = dual variable for row i
|
|---|
| 27 | private double[] py; // py[j] = dual variable for col j
|
|---|
| 28 | private int[] xy; // xy[i] = j means i-j is a match
|
|---|
| 29 | private int[] yx; // yx[j] = i means i-j is a match
|
|---|
| 30 |
|
|---|
| 31 |
|
|---|
| 32 | public AssignmentProblem(double[][] weight) {
|
|---|
| 33 | N = weight.length;
|
|---|
| 34 | this.weight = new double[N][N];
|
|---|
| 35 | for (int i = 0; i < N; i++)
|
|---|
| 36 | for (int j = 0; j < N; j++)
|
|---|
| 37 | this.weight[i][j] = weight[i][j];
|
|---|
| 38 |
|
|---|
| 39 | // dual variables
|
|---|
| 40 | px = new double[N];
|
|---|
| 41 | py = new double[N];
|
|---|
| 42 |
|
|---|
| 43 | // initial matching is empty
|
|---|
| 44 | xy = new int[N];
|
|---|
| 45 | yx = new int[N];
|
|---|
| 46 | for (int i = 0; i < N; i++) xy[i] = UNMATCHED;
|
|---|
| 47 | for (int j = 0; j < N; j++) yx[j] = UNMATCHED;
|
|---|
| 48 |
|
|---|
| 49 | // add N edges to matching
|
|---|
| 50 | for (int k = 0; k < N; k++) {
|
|---|
| 51 | assert isDualFeasible();
|
|---|
| 52 | assert isComplementarySlack();
|
|---|
| 53 | augment();
|
|---|
| 54 | }
|
|---|
| 55 | assert check();
|
|---|
| 56 | }
|
|---|
| 57 |
|
|---|
| 58 | // find shortest augmenting path and upate
|
|---|
| 59 | private void augment() {
|
|---|
| 60 |
|
|---|
| 61 | // build residual graph
|
|---|
| 62 | EdgeWeightedDigraph G = new EdgeWeightedDigraph(2*N+2);
|
|---|
| 63 | int s = 2*N, t = 2*N+1;
|
|---|
| 64 | for (int i = 0; i < N; i++) {
|
|---|
| 65 | if (xy[i] == UNMATCHED) G.addEdge(new DirectedEdge(s, i, 0.0));
|
|---|
| 66 | }
|
|---|
| 67 | for (int j = 0; j < N; j++) {
|
|---|
| 68 | if (yx[j] == UNMATCHED) G.addEdge(new DirectedEdge(N+j, t, py[j]));
|
|---|
| 69 | }
|
|---|
| 70 | for (int i = 0; i < N; i++) {
|
|---|
| 71 | for (int j = 0; j < N; j++) {
|
|---|
| 72 | if (xy[i] == j) G.addEdge(new DirectedEdge(N+j, i, 0.0));
|
|---|
| 73 | else G.addEdge(new DirectedEdge(i, N+j, reduced(i, j)));
|
|---|
| 74 | }
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | // compute shortest path from s to every other vertex
|
|---|
| 78 | DijkstraSP spt = new DijkstraSP(G, s);
|
|---|
| 79 |
|
|---|
| 80 | // augment along alternating path
|
|---|
| 81 | for (DirectedEdge e : spt.pathTo(t)) {
|
|---|
| 82 | int i = e.from(), j = e.to() - N;
|
|---|
| 83 | if (i < N) {
|
|---|
| 84 | xy[i] = j;
|
|---|
| 85 | yx[j] = i;
|
|---|
| 86 | }
|
|---|
| 87 | }
|
|---|
| 88 |
|
|---|
| 89 | // update dual variables
|
|---|
| 90 | for (int i = 0; i < N; i++) px[i] += spt.distTo(i);
|
|---|
| 91 | for (int j = 0; j < N; j++) py[j] += spt.distTo(N+j);
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | // reduced cost of i-j
|
|---|
| 95 | private double reduced(int i, int j) {
|
|---|
| 96 | return weight[i][j] + px[i] - py[j];
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | // total weight of min weight perfect matching
|
|---|
| 100 | public double weight() {
|
|---|
| 101 | double total = 0.0;
|
|---|
| 102 | for (int i = 0; i < N; i++) {
|
|---|
| 103 | if (xy[i] != UNMATCHED)
|
|---|
| 104 | total += weight[i][xy[i]];
|
|---|
| 105 | }
|
|---|
| 106 | return total;
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 | public int sol(int i) {
|
|---|
| 110 | return xy[i];
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | // check that dual variables are feasible
|
|---|
| 114 | private boolean isDualFeasible() {
|
|---|
| 115 | // check that all edges have >= 0 reduced cost
|
|---|
| 116 | for (int i = 0; i < N; i++) {
|
|---|
| 117 | for (int j = 0; j < N; j++) {
|
|---|
| 118 | if (reduced(i, j) < 0) {
|
|---|
| 119 | // StdOut.println("Dual variables are not feasible");
|
|---|
| 120 | return false;
|
|---|
| 121 | }
|
|---|
| 122 | }
|
|---|
| 123 | }
|
|---|
| 124 | return true;
|
|---|
| 125 | }
|
|---|
| 126 |
|
|---|
| 127 | // check that primal and dual variables are complementary slack
|
|---|
| 128 | private boolean isComplementarySlack() {
|
|---|
| 129 |
|
|---|
| 130 | // check that all matched edges have 0-reduced cost
|
|---|
| 131 | for (int i = 0; i < N; i++) {
|
|---|
| 132 | if ((xy[i] != UNMATCHED) && (reduced(i, xy[i]) != 0)) {
|
|---|
| 133 | // StdOut.println("Primal and dual variables are not complementary slack");
|
|---|
| 134 | return false;
|
|---|
| 135 | }
|
|---|
| 136 | }
|
|---|
| 137 | return true;
|
|---|
| 138 | }
|
|---|
| 139 |
|
|---|
| 140 | // check that primal variables are a perfect matching
|
|---|
| 141 | private boolean isPerfectMatching() {
|
|---|
| 142 |
|
|---|
| 143 | // check that xy[] is a perfect matching
|
|---|
| 144 | boolean[] perm = new boolean[N];
|
|---|
| 145 | for (int i = 0; i < N; i++) {
|
|---|
| 146 | if (perm[xy[i]]) {
|
|---|
| 147 | // StdOut.println("Not a perfect matching");
|
|---|
| 148 | return false;
|
|---|
| 149 | }
|
|---|
| 150 | perm[xy[i]] = true;
|
|---|
| 151 | }
|
|---|
| 152 |
|
|---|
| 153 | // check that xy[] and yx[] are inverses
|
|---|
| 154 | for (int j = 0; j < N; j++) {
|
|---|
| 155 | if (xy[yx[j]] != j) {
|
|---|
| 156 | // StdOut.println("xy[] and yx[] are not inverses");
|
|---|
| 157 | return false;
|
|---|
| 158 | }
|
|---|
| 159 | }
|
|---|
| 160 | for (int i = 0; i < N; i++) {
|
|---|
| 161 | if (yx[xy[i]] != i) {
|
|---|
| 162 | // StdOut.println("xy[] and yx[] are not inverses");
|
|---|
| 163 | return false;
|
|---|
| 164 | }
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 | return true;
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 |
|
|---|
| 171 | // check optimality conditions
|
|---|
| 172 | private boolean check() {
|
|---|
| 173 | return isPerfectMatching() && isDualFeasible() && isComplementarySlack();
|
|---|
| 174 | }
|
|---|
| 175 |
|
|---|
| 176 | // public static void main(String[] args) {
|
|---|
| 177 | // In in = new In(args[0]);
|
|---|
| 178 | // int N = in.readInt();
|
|---|
| 179 | // double[][] weight = new double[N][N];
|
|---|
| 180 | // for (int i = 0; i < N; i++) {
|
|---|
| 181 | // for (int j = 0; j < N; j++) {
|
|---|
| 182 | // weight[i][j] = in.readDouble();
|
|---|
| 183 | // }
|
|---|
| 184 | // }
|
|---|
| 185 | //
|
|---|
| 186 | // AssignmentProblem assignment = new AssignmentProblem(weight);
|
|---|
| 187 | // StdOut.println("weight = " + assignment.weight());
|
|---|
| 188 | // for (int i = 0; i < N; i++)
|
|---|
| 189 | // StdOut.println(i + "-" + assignment.sol(i) + " " + weight[i][assignment.sol(i)]);
|
|---|
| 190 | // }
|
|---|
| 191 |
|
|---|
| 192 | }
|
|---|