1 | package UtilsPlugin;
|
---|
2 |
|
---|
3 | import static org.openstreetmap.josm.tools.I18n.tr;
|
---|
4 |
|
---|
5 | import java.awt.event.ActionEvent;
|
---|
6 | import java.util.ArrayList;
|
---|
7 | import java.util.Arrays;
|
---|
8 | import java.util.Collection;
|
---|
9 | import java.util.Comparator;
|
---|
10 | import java.util.HashMap;
|
---|
11 | import java.util.HashSet;
|
---|
12 | import java.util.LinkedList;
|
---|
13 | import java.util.List;
|
---|
14 |
|
---|
15 | import org.openstreetmap.josm.Main;
|
---|
16 | import org.openstreetmap.josm.command.ChangeCommand;
|
---|
17 | import org.openstreetmap.josm.command.Command;
|
---|
18 | import org.openstreetmap.josm.command.DeleteCommand;
|
---|
19 | import org.openstreetmap.josm.command.SequenceCommand;
|
---|
20 | import org.openstreetmap.josm.data.SelectionChangedListener;
|
---|
21 | import org.openstreetmap.josm.data.coor.LatLon;
|
---|
22 | import org.openstreetmap.josm.data.osm.Node;
|
---|
23 | import org.openstreetmap.josm.data.osm.OsmPrimitive;
|
---|
24 | import org.openstreetmap.josm.data.osm.Segment;
|
---|
25 | import org.openstreetmap.josm.data.osm.Way;
|
---|
26 | import org.openstreetmap.josm.data.osm.visitor.Visitor;
|
---|
27 |
|
---|
28 | import org.openstreetmap.josm.data.osm.DataSet;
|
---|
29 | import org.openstreetmap.josm.actions.JosmAction;
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * Forgets the selected data, unless it is referenced by something.
|
---|
33 | *
|
---|
34 | * "Forgetting", as opposed to "deleting", means that the data is simply removed from JOSM, and
|
---|
35 | * not tagged as "to be deleted on server".
|
---|
36 | *
|
---|
37 | * - selected WAYS can always be forgotten.
|
---|
38 | * - selected SEGMENTS can be forgotten unless they are referenced by not-forgotten ways.
|
---|
39 | * - selected NODES can be forgotten unless they are referenced by not-forgotten segments.
|
---|
40 | */
|
---|
41 |
|
---|
42 | public class SimplifyWayAction extends JosmAction implements SelectionChangedListener {
|
---|
43 |
|
---|
44 |
|
---|
45 | private Way selectedWay = null;
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * Create a new SimplifyWayAction.
|
---|
49 | */
|
---|
50 | public SimplifyWayAction() {
|
---|
51 | super(tr("Simplify Way"), "simplify", tr("Delete low-information nodes from a way."), 0, 0, true);
|
---|
52 | try { Main.ds.addSelectionChangedListener(this); }
|
---|
53 | catch( NoSuchMethodError e )
|
---|
54 | {
|
---|
55 | try {
|
---|
56 | java.lang.reflect.Field f = DataSet.class.getDeclaredField("listeners");
|
---|
57 | ((Collection<SelectionChangedListener>)f.get(Main.ds)).add(this);
|
---|
58 | // Main.ds.listeners.add(this);
|
---|
59 | } catch (Exception x) { System.out.println( e ); }
|
---|
60 | }
|
---|
61 | }
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * Called when the action is executed.
|
---|
65 | */
|
---|
66 | public void actionPerformed(ActionEvent e) {
|
---|
67 |
|
---|
68 | Collection<OsmPrimitive> selection = Main.ds.getSelected();
|
---|
69 |
|
---|
70 |
|
---|
71 | Visitor selectVisitor = new Visitor(){
|
---|
72 | public void visit(Node n) {
|
---|
73 | }
|
---|
74 | public void visit(Segment s) {
|
---|
75 | }
|
---|
76 | public void visit(Way w) {
|
---|
77 | selectedWay = w;
|
---|
78 | }
|
---|
79 | };
|
---|
80 |
|
---|
81 | for (OsmPrimitive p : selection)
|
---|
82 | p.visit(selectVisitor);
|
---|
83 |
|
---|
84 | simplifyWay(selectedWay);
|
---|
85 | }
|
---|
86 |
|
---|
87 | private class NodeRecord {
|
---|
88 | public boolean keep = false; // whether this node must be kept
|
---|
89 | public Node node; // the node
|
---|
90 | public NodeRecord previous; // the segment leading to this node
|
---|
91 | public double xte; // the cross-track error
|
---|
92 | public NodeRecord next;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * Simplifies the given way by potentially removing nodes and segments.
|
---|
97 | *
|
---|
98 | * @param way
|
---|
99 | * @return true if simplification was successful (even if way was not changed)
|
---|
100 | * false if simplification was not possible (branching/unordered ways)
|
---|
101 | */
|
---|
102 | public boolean simplifyWay(Way way) {
|
---|
103 |
|
---|
104 | // first build some structures that help us working with this way, assuming
|
---|
105 | // it might be very long, so we want to be efficient.
|
---|
106 |
|
---|
107 | // a map holding one NodeRecord object for every node in the way, except
|
---|
108 | // the first node (which is never "simplified" anyway)
|
---|
109 | HashMap<Node,NodeRecord> nodeIndex = new HashMap<Node,NodeRecord>();
|
---|
110 |
|
---|
111 | // a hash set containing all segments in this way, for fast is-in-way checks
|
---|
112 | HashSet<Segment> segmentIndex = new HashSet<Segment>();
|
---|
113 |
|
---|
114 | // in addition to all this, we also have each NodeRecord pointing
|
---|
115 | // to the next one along the way, making a linked list.
|
---|
116 | NodeRecord firstNr = null;
|
---|
117 |
|
---|
118 | // fill structures
|
---|
119 | NodeRecord prevNr = null;
|
---|
120 | for (Segment s : way.segments) {
|
---|
121 | if ((prevNr != null) && (!s.from.equals(prevNr.node))) {
|
---|
122 | // error
|
---|
123 | System.out.println("XXX err");
|
---|
124 | return false;
|
---|
125 | }
|
---|
126 | segmentIndex.add(s);
|
---|
127 | NodeRecord nr = new NodeRecord();
|
---|
128 | nr.node = s.to;
|
---|
129 | if (prevNr == null) {
|
---|
130 | nr.previous = new NodeRecord();
|
---|
131 | nr.previous.node = s.from;
|
---|
132 | // set "keep" on first node
|
---|
133 | nr.previous.keep = true;
|
---|
134 | firstNr = nr.previous;
|
---|
135 | firstNr.next = nr;
|
---|
136 | nodeIndex.put(s.from, nr.previous);
|
---|
137 | } else {
|
---|
138 | nr.previous = prevNr;
|
---|
139 | prevNr.next = nr;
|
---|
140 | }
|
---|
141 | nr.xte = 0;
|
---|
142 | nr.next = null;
|
---|
143 | prevNr = nr;
|
---|
144 | nodeIndex.put(s.to, nr);
|
---|
145 | }
|
---|
146 |
|
---|
147 | // set "keep" on last node
|
---|
148 | prevNr.keep = true;
|
---|
149 |
|
---|
150 | // check the current data set, and mark all nodes that are used by a segment
|
---|
151 | // not exclusively owned by the current way as "untouchable".
|
---|
152 | for (Segment s: Main.ds.segments) {
|
---|
153 | if (s.deleted) continue;
|
---|
154 | if (segmentIndex.contains(s)) continue; // these don't count
|
---|
155 | NodeRecord tmp;
|
---|
156 | tmp = nodeIndex.get(s.from); if (tmp != null) tmp.keep = true;
|
---|
157 | tmp = nodeIndex.get(s.to); if (tmp != null) tmp.keep = true;
|
---|
158 | }
|
---|
159 |
|
---|
160 | for (Way w: Main.ds.ways) {
|
---|
161 | if (w.deleted) continue;
|
---|
162 | if (w.equals(way)) continue; // these don't count
|
---|
163 | for (Segment s: w.segments)
|
---|
164 | {
|
---|
165 | NodeRecord tmp;
|
---|
166 | tmp = nodeIndex.get(s.from); if (tmp != null) tmp.keep = true;
|
---|
167 | tmp = nodeIndex.get(s.to); if (tmp != null) tmp.keep = true;
|
---|
168 | }
|
---|
169 | }
|
---|
170 |
|
---|
171 | // keep all nodes which have tags other than source and created_by
|
---|
172 | for (NodeRecord nr : nodeIndex.values()) {
|
---|
173 | Collection<String> keyset = nr.node.keySet();
|
---|
174 | keyset.remove("source");
|
---|
175 | keyset.remove("created_by");
|
---|
176 | if (!keyset.isEmpty()) nr.keep = true;
|
---|
177 | }
|
---|
178 |
|
---|
179 | // compute cross-track error for all elements. cross-track error is the
|
---|
180 | // distance between a node and the nearest point on a line from the
|
---|
181 | // previous to the next node - that's the error you would introduce
|
---|
182 | // by removing the node.
|
---|
183 | for (NodeRecord r = firstNr; r.next != null; r = r.next) {
|
---|
184 | computeXte(r);
|
---|
185 | }
|
---|
186 |
|
---|
187 | boolean stayInLoop = true;
|
---|
188 | double treshold = Double.parseDouble(Main.pref.get("simplify-way.max-error", "0.06"));
|
---|
189 | while(stayInLoop) {
|
---|
190 | NodeRecord[] sorted = new NodeRecord[nodeIndex.size()];
|
---|
191 | nodeIndex.values().toArray(sorted);
|
---|
192 | Arrays.sort(sorted, new Comparator<NodeRecord>() {
|
---|
193 | public int compare(NodeRecord a, NodeRecord b) {
|
---|
194 | return (a.xte < b.xte) ? -1 : (a.xte > b.xte) ? 1 : 0;
|
---|
195 | }
|
---|
196 | });
|
---|
197 |
|
---|
198 | stayInLoop = false;
|
---|
199 | for (NodeRecord nr : sorted) {
|
---|
200 | if (nr.keep) continue;
|
---|
201 | if (nr.xte < treshold) {
|
---|
202 | // delete this node
|
---|
203 | nodeIndex.remove(nr.node);
|
---|
204 | if (nr == firstNr) {
|
---|
205 | firstNr = nr.next;
|
---|
206 | } else {
|
---|
207 | nr.previous.next = nr.next;
|
---|
208 | }
|
---|
209 | if (nr.next != null) {
|
---|
210 | nr.next.previous = nr.previous;
|
---|
211 | }
|
---|
212 | computeXte(nr.next);
|
---|
213 | computeXte(nr.previous);
|
---|
214 | stayInLoop = true;
|
---|
215 | }
|
---|
216 | break;
|
---|
217 | }
|
---|
218 | }
|
---|
219 |
|
---|
220 | Segment currentOriginalSegment = null;
|
---|
221 | Segment currentModifiedSegment = null;
|
---|
222 | Way wayCopy = null;
|
---|
223 | int delCount = 0;
|
---|
224 | Collection<Command> cmds = new LinkedList<Command>();
|
---|
225 |
|
---|
226 | for (Segment s : way.segments) {
|
---|
227 | if (currentOriginalSegment == null) {
|
---|
228 | currentOriginalSegment = s;
|
---|
229 | currentModifiedSegment = s;
|
---|
230 | continue;
|
---|
231 | }
|
---|
232 |
|
---|
233 | if (nodeIndex.containsKey(s.from)) {
|
---|
234 | // the current remaining segment's "to" node is not
|
---|
235 | // deleted, so it may stay.
|
---|
236 | if (currentModifiedSegment != currentOriginalSegment) {
|
---|
237 | cmds.add(new ChangeCommand(currentOriginalSegment, currentModifiedSegment));
|
---|
238 | }
|
---|
239 | currentOriginalSegment = s;
|
---|
240 | currentModifiedSegment = s;
|
---|
241 | } else {
|
---|
242 | // the "to" node is to be deleted; delete segment and
|
---|
243 | // node
|
---|
244 | cmds.add(new DeleteCommand(Arrays.asList(new OsmPrimitive[]{s, s.from})));
|
---|
245 | delCount ++;
|
---|
246 | if (wayCopy == null) {
|
---|
247 | wayCopy = new Way(way);
|
---|
248 | }
|
---|
249 | wayCopy.segments.remove(s);
|
---|
250 | if (currentModifiedSegment == currentOriginalSegment) {
|
---|
251 | currentModifiedSegment = new Segment(currentOriginalSegment);
|
---|
252 | }
|
---|
253 | currentModifiedSegment.to = s.to;
|
---|
254 | }
|
---|
255 | }
|
---|
256 | if (currentModifiedSegment != currentOriginalSegment) {
|
---|
257 | cmds.add(new ChangeCommand(currentOriginalSegment, currentModifiedSegment));
|
---|
258 | }
|
---|
259 |
|
---|
260 | if (wayCopy != null) {
|
---|
261 | cmds.add(new ChangeCommand(way, wayCopy));
|
---|
262 | Main.main.editLayer().add(new SequenceCommand(tr("Simplify Way (remove {0} nodes)", delCount), cmds));
|
---|
263 | }
|
---|
264 |
|
---|
265 | return true;
|
---|
266 |
|
---|
267 | }
|
---|
268 | public void selectionChanged(Collection<? extends OsmPrimitive> newSelection) {
|
---|
269 | setEnabled(!newSelection.isEmpty());
|
---|
270 | }
|
---|
271 |
|
---|
272 | private static void computeXte(NodeRecord r) {
|
---|
273 | if ((r.previous == null) || (r.next == null)) {
|
---|
274 | r.xte = 0;
|
---|
275 | return;
|
---|
276 | }
|
---|
277 | Node prevNode = r.previous.node;
|
---|
278 | Node nextNode = r.next.node;
|
---|
279 | r.xte = radtomiles(linedist(prevNode.coor.lat(), prevNode.coor.lon(),
|
---|
280 | r.node.coor.lat(), r.node.coor.lon(),
|
---|
281 | nextNode.coor.lat(), nextNode.coor.lon()));
|
---|
282 | }
|
---|
283 |
|
---|
284 | /* ----------------------------------------------------------------------
|
---|
285 | * Everything below this comment was converted from C to Java by Frederik
|
---|
286 | * Ramm. The original sources are the files grtcirc.c and smplrout.c from
|
---|
287 | * the gpsbabel source code (www.gpsbabel.org), which is under GPL. The
|
---|
288 | * relevant code portions have been written by Robert Lipe.
|
---|
289 | *
|
---|
290 | * Method names have been left unchanged where possible.
|
---|
291 | */
|
---|
292 |
|
---|
293 | public static double EARTH_RAD = 6378137.0;
|
---|
294 | public static double radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
|
---|
295 |
|
---|
296 | public static double[] crossproduct(double[] v1, double[] v2) {
|
---|
297 | double[] rv = new double[3];
|
---|
298 | rv[0] = v1[1]*v2[2]-v2[1]*v1[2];
|
---|
299 | rv[1] = v1[2]*v2[0]-v2[2]*v1[0];
|
---|
300 | rv[2] = v1[0]*v2[1]-v1[1]*v2[0];
|
---|
301 | return rv;
|
---|
302 | }
|
---|
303 |
|
---|
304 | public static double dotproduct(double[] v1, double[] v2) {
|
---|
305 | return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
|
---|
306 | }
|
---|
307 |
|
---|
308 | public static double radtomiles(double rads) {
|
---|
309 | return (rads*radmiles);
|
---|
310 | }
|
---|
311 |
|
---|
312 | public static double radtometers(double rads) {
|
---|
313 | return (rads * EARTH_RAD);
|
---|
314 | }
|
---|
315 |
|
---|
316 | public static double veclen(double[] vec) {
|
---|
317 | return Math.sqrt(vec[0]*vec[0]+vec[1]*vec[1]+vec[2]*vec[2]);
|
---|
318 | }
|
---|
319 |
|
---|
320 | public static double gcdist(double lat1, double lon1, double lat2, double lon2)
|
---|
321 | {
|
---|
322 | double res;
|
---|
323 | double sdlat, sdlon;
|
---|
324 |
|
---|
325 | sdlat = Math.sin((lat1 - lat2) / 2.0);
|
---|
326 | sdlon = Math.sin((lon1 - lon2) / 2.0);
|
---|
327 |
|
---|
328 | res = Math.sqrt(sdlat * sdlat + Math.cos(lat1) * Math.cos(lat2) * sdlon * sdlon);
|
---|
329 |
|
---|
330 | if (res > 1.0) {
|
---|
331 | res = 1.0;
|
---|
332 | } else if (res < -1.0) {
|
---|
333 | res = -1.0;
|
---|
334 | }
|
---|
335 |
|
---|
336 | res = Math.asin(res);
|
---|
337 | return 2.0 * res;
|
---|
338 | }
|
---|
339 |
|
---|
340 | static double linedist(double lat1, double lon1, double lat2, double lon2, double lat3, double lon3) {
|
---|
341 |
|
---|
342 | double dot;
|
---|
343 |
|
---|
344 | /* degrees to radians */
|
---|
345 | lat1 = Math.toRadians(lat1); lon1 = Math.toRadians(lon1);
|
---|
346 | lat2 = Math.toRadians(lat2); lon2 = Math.toRadians(lon2);
|
---|
347 | lat3 = Math.toRadians(lat3); lon3 = Math.toRadians(lon3);
|
---|
348 |
|
---|
349 | /* polar to ECEF rectangular */
|
---|
350 | double[] v1 = new double[3];
|
---|
351 | double[] v2 = new double[3];
|
---|
352 | double[] v3 = new double[3];
|
---|
353 | v1[0] = Math.cos(lon1)*Math.cos(lat1); v1[1] = Math.sin(lat1); v1[2] = Math.sin(lon1)*Math.cos(lat1);
|
---|
354 | v2[0] = Math.cos(lon2)*Math.cos(lat2); v2[1] = Math.sin(lat2); v2[2] = Math.sin(lon2)*Math.cos(lat2);
|
---|
355 | v3[0] = Math.cos(lon3)*Math.cos(lat3); v3[1] = Math.sin(lat3); v3[2] = Math.sin(lon3)*Math.cos(lat3);
|
---|
356 |
|
---|
357 | /* 'va' is the axis; the line that passes through the center of the earth
|
---|
358 | * and is perpendicular to the great circle through point 1 and point 2
|
---|
359 | * It is computed by taking the cross product of the '1' and '2' vectors.*/
|
---|
360 | double[] va = crossproduct(v1, v2);
|
---|
361 | double la = veclen(va);
|
---|
362 |
|
---|
363 | if (la != 0) {
|
---|
364 | va[0] /= la;
|
---|
365 | va[1] /= la;
|
---|
366 | va[2] /= la;
|
---|
367 |
|
---|
368 | /* dot is the component of the length of '3' that is along the axis.
|
---|
369 | * What's left is a non-normalized vector that lies in the plane of
|
---|
370 | * 1 and 2. */
|
---|
371 |
|
---|
372 | dot = dotproduct(v3, va);
|
---|
373 |
|
---|
374 | double[] vp = new double[3];
|
---|
375 | vp[0]=v3[0]-dot*va[0];
|
---|
376 | vp[1]=v3[1]-dot*va[1];
|
---|
377 | vp[2]=v3[2]-dot*va[2];
|
---|
378 |
|
---|
379 | double lp = veclen(vp);
|
---|
380 |
|
---|
381 | if (lp != 0) {
|
---|
382 |
|
---|
383 | /* After this, 'p' is normalized */
|
---|
384 | vp[0] /= lp;
|
---|
385 | vp[1] /= lp;
|
---|
386 | vp[2] /= lp;
|
---|
387 |
|
---|
388 | double[] cp1 = crossproduct(v1, vp);
|
---|
389 | double dp1 = dotproduct(cp1, va);
|
---|
390 |
|
---|
391 | double[] cp2 = crossproduct(v2, vp);
|
---|
392 | double dp2 = dotproduct(cp2, va);
|
---|
393 |
|
---|
394 | if ( dp1 >= 0 && dp2 >= 0 ) {
|
---|
395 | /* rather than call gcdist and all its sines and cosines and
|
---|
396 | * worse, we can get the angle directly. It's the arctangent
|
---|
397 | * of the length of the component of vector 3 along the axis
|
---|
398 | * divided by the length of the component of vector 3 in the
|
---|
399 | * plane. We already have both of those numbers.
|
---|
400 | *
|
---|
401 | * atan2 would be overkill because lp and Math.abs are both
|
---|
402 | * known to be positive. */
|
---|
403 | return Math.atan(Math.abs(dot)/lp);
|
---|
404 | }
|
---|
405 |
|
---|
406 | /* otherwise, get the distance from the closest endpoint */
|
---|
407 | double c1 = dotproduct(v1, vp);
|
---|
408 | double c2 = dotproduct(v2, vp);
|
---|
409 | dp1 = Math.abs(dp1);
|
---|
410 | dp2 = Math.abs(dp2);
|
---|
411 |
|
---|
412 | /* This is a hack. d$n$ is proportional to the sine of the angle
|
---|
413 | * between point $n$ and point p. That preserves orderedness up
|
---|
414 | * to an angle of 90 degrees. c$n$ is proportional to the cosine
|
---|
415 | * of the same angle; if the angle is over 90 degrees, c$n$ is
|
---|
416 | * negative. In that case, we flop the sine across the y=1 axis
|
---|
417 | * so that the resulting value increases as the angle increases.
|
---|
418 | *
|
---|
419 | * This only works because all of the points are on a unit sphere. */
|
---|
420 |
|
---|
421 | if (c1 < 0) {
|
---|
422 | dp1 = 2 - dp1;
|
---|
423 | }
|
---|
424 | if (c2 < 0) {
|
---|
425 | dp2 = 2 - dp2;
|
---|
426 | }
|
---|
427 |
|
---|
428 | if (Math.abs(dp1) < Math.abs(dp2)) {
|
---|
429 | return gcdist(lat1,lon1,lat3,lon3);
|
---|
430 | } else {
|
---|
431 | return gcdist(lat2,lon2,lat3,lon3);
|
---|
432 | }
|
---|
433 | } else {
|
---|
434 | /* lp is 0 when 3 is 90 degrees from the great circle */
|
---|
435 | return Math.PI/2;
|
---|
436 | }
|
---|
437 | } else {
|
---|
438 | /* la is 0 when 1 and 2 are either the same point or 180 degrees apart */
|
---|
439 | dot = dotproduct(v1, v2);
|
---|
440 | if (dot >= 0) {
|
---|
441 | return gcdist(lat1,lon1,lat3,lon3);
|
---|
442 | } else {
|
---|
443 | return 0;
|
---|
444 | }
|
---|
445 | }
|
---|
446 | }
|
---|
447 | }
|
---|