1 | /**
|
---|
2 | * Terracer: A JOSM Plugin for terraced houses.
|
---|
3 | *
|
---|
4 | * Copyright 2009 CloudMade Ltd.
|
---|
5 | *
|
---|
6 | * Released under the GPLv2, see LICENSE file for details.
|
---|
7 | */
|
---|
8 | package terracer;
|
---|
9 |
|
---|
10 | import static org.openstreetmap.josm.tools.I18n.tr;
|
---|
11 | import static org.openstreetmap.josm.tools.I18n.trn;
|
---|
12 |
|
---|
13 | import java.awt.BorderLayout;
|
---|
14 | import java.awt.Choice;
|
---|
15 | import java.awt.Component;
|
---|
16 | import java.awt.GridBagLayout;
|
---|
17 | import java.awt.event.ActionEvent;
|
---|
18 | import java.awt.event.ItemEvent;
|
---|
19 | import java.awt.event.ItemListener;
|
---|
20 | import java.awt.event.KeyEvent;
|
---|
21 | import java.util.ArrayList;
|
---|
22 | import java.util.Arrays;
|
---|
23 | import java.util.Collection;
|
---|
24 | import java.util.Collections;
|
---|
25 | import java.util.HashMap;
|
---|
26 | import java.util.LinkedList;
|
---|
27 | import java.util.List;
|
---|
28 | import java.util.Map;
|
---|
29 | import java.util.TreeMap;
|
---|
30 | import java.util.TreeSet;
|
---|
31 |
|
---|
32 | import javax.swing.JComponent;
|
---|
33 | import javax.swing.JFormattedTextField;
|
---|
34 | import javax.swing.JLabel;
|
---|
35 | import javax.swing.JOptionPane;
|
---|
36 | import javax.swing.JPanel;
|
---|
37 | import javax.swing.JSpinner;
|
---|
38 | import javax.swing.JTextField;
|
---|
39 | import javax.swing.SpinnerNumberModel;
|
---|
40 | import javax.swing.SpringLayout;
|
---|
41 | import javax.swing.event.ChangeEvent;
|
---|
42 | import javax.swing.event.ChangeListener;
|
---|
43 |
|
---|
44 | import org.openstreetmap.josm.Main;
|
---|
45 | import org.openstreetmap.josm.actions.JosmAction;
|
---|
46 | import org.openstreetmap.josm.command.AddCommand;
|
---|
47 | import org.openstreetmap.josm.command.Command;
|
---|
48 | import org.openstreetmap.josm.command.SequenceCommand;
|
---|
49 | import org.openstreetmap.josm.data.coor.LatLon;
|
---|
50 | import org.openstreetmap.josm.data.osm.Node;
|
---|
51 | import org.openstreetmap.josm.data.osm.OsmPrimitive;
|
---|
52 | import org.openstreetmap.josm.data.osm.Relation;
|
---|
53 | import org.openstreetmap.josm.data.osm.RelationMember;
|
---|
54 | import org.openstreetmap.josm.data.osm.Way;
|
---|
55 | import org.openstreetmap.josm.gui.tagging.TaggingPreset.Item;
|
---|
56 | import org.openstreetmap.josm.tools.AutoCompleteComboBox;
|
---|
57 | import org.openstreetmap.josm.tools.GBC;
|
---|
58 | import org.openstreetmap.josm.tools.Pair;
|
---|
59 | import org.openstreetmap.josm.tools.Shortcut;
|
---|
60 |
|
---|
61 | /**
|
---|
62 | * Terraces a quadrilateral, closed way into a series of quadrilateral,
|
---|
63 | * closed ways.
|
---|
64 | *
|
---|
65 | * At present it only works on quadrilaterals, but there is no reason
|
---|
66 | * why it couldn't be extended to work with other shapes too. The
|
---|
67 | * algorithm employed is naive, but it works in the simple case.
|
---|
68 | *
|
---|
69 | * @author zere
|
---|
70 | */
|
---|
71 | public final class TerracerAction extends JosmAction {
|
---|
72 |
|
---|
73 | // smsms1 asked for the last value to be remembered to make it easier to do
|
---|
74 | // repeated terraces. this is the easiest, but not necessarily nicest, way.
|
---|
75 | private static String lastSelectedValue = "";
|
---|
76 |
|
---|
77 | public TerracerAction() {
|
---|
78 | super(tr("Terrace a building"),
|
---|
79 | "terrace",
|
---|
80 | tr("Creates individual buildings from a long building."),
|
---|
81 | Shortcut.registerShortcut("tools:Terracer",
|
---|
82 | tr("Tool: {0}", tr("Terrace a building")),
|
---|
83 | KeyEvent.VK_T, Shortcut.GROUP_EDIT,
|
---|
84 | Shortcut.SHIFT_DEFAULT),
|
---|
85 | true);
|
---|
86 | }
|
---|
87 |
|
---|
88 | /**
|
---|
89 | * Checks that the selection is OK. If not, displays error message. If so
|
---|
90 | * calls to terraceBuilding(), which does all the real work.
|
---|
91 | */
|
---|
92 | public void actionPerformed(ActionEvent e) {
|
---|
93 | Collection<OsmPrimitive> sel = Main.ds.getSelected();
|
---|
94 | boolean badSelect = false;
|
---|
95 |
|
---|
96 | if (sel.size() == 1) {
|
---|
97 | OsmPrimitive prim = sel.iterator().next();
|
---|
98 |
|
---|
99 | if (prim instanceof Way) {
|
---|
100 | Way way = (Way)prim;
|
---|
101 |
|
---|
102 | if ((way.nodes.size() >= 5) &&
|
---|
103 | way.isClosed()) {
|
---|
104 | // first ask the user how many buildings to terrace into
|
---|
105 | HouseNumberDialog dialog = new HouseNumberDialog();
|
---|
106 | final JOptionPane optionPane = new JOptionPane(dialog, JOptionPane.PLAIN_MESSAGE, JOptionPane.OK_CANCEL_OPTION);
|
---|
107 |
|
---|
108 | String title = trn("Change {0} object", "Change {0} objects", sel.size(), sel.size());
|
---|
109 | if(sel.size() == 0)
|
---|
110 | title = tr("Nothing selected!");
|
---|
111 |
|
---|
112 | optionPane.createDialog(Main.parent, title).setVisible(true);
|
---|
113 | Object answerObj = optionPane.getValue();
|
---|
114 | if (answerObj != null &&
|
---|
115 | answerObj != JOptionPane.UNINITIALIZED_VALUE &&
|
---|
116 | (answerObj instanceof Integer &&
|
---|
117 | (Integer)answerObj == JOptionPane.OK_OPTION)) {
|
---|
118 |
|
---|
119 | // call out to the method which does the actual
|
---|
120 | // terracing.
|
---|
121 | terraceBuilding(way,
|
---|
122 | dialog.numberFrom(),
|
---|
123 | dialog.numberTo(),
|
---|
124 | dialog.stepSize(),
|
---|
125 | dialog.streetName());
|
---|
126 |
|
---|
127 | }
|
---|
128 | } else {
|
---|
129 | badSelect = true;
|
---|
130 | }
|
---|
131 | } else {
|
---|
132 | badSelect = true;
|
---|
133 | }
|
---|
134 | } else {
|
---|
135 | badSelect = true;
|
---|
136 | }
|
---|
137 |
|
---|
138 | if (badSelect) {
|
---|
139 | JOptionPane.showMessageDialog(Main.parent,
|
---|
140 | tr("Select a single, closed way of at least four nodes."));
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | /**
|
---|
145 | * Terraces a single, closed, quadrilateral way.
|
---|
146 | *
|
---|
147 | * Any node must be adjacent to both a short and long edge, we naively
|
---|
148 | * choose the longest edge and its opposite and interpolate along them
|
---|
149 | * linearly to produce new nodes. Those nodes are then assembled into
|
---|
150 | * closed, quadrilateral ways and left in the selection.
|
---|
151 | *
|
---|
152 | * @param w The closed, quadrilateral way to terrace.
|
---|
153 | */
|
---|
154 | private void terraceBuilding(Way w, int from, int to, int step, String streetName) {
|
---|
155 | final int nb = 1 + (to - from) / step;
|
---|
156 |
|
---|
157 | // now find which is the longest side connecting the first node
|
---|
158 | Pair<Way,Way> interp = findFrontAndBack(w);
|
---|
159 |
|
---|
160 | final double frontLength = wayLength(interp.a);
|
---|
161 | final double backLength = wayLength(interp.b);
|
---|
162 |
|
---|
163 | // new nodes array to hold all intermediate nodes
|
---|
164 | Node[][] new_nodes = new Node[2][nb + 1];
|
---|
165 |
|
---|
166 | Collection<Command> commands = new LinkedList<Command>();
|
---|
167 | Collection<Way> ways = new LinkedList<Way>();
|
---|
168 |
|
---|
169 | // create intermediate nodes by interpolating.
|
---|
170 | for (int i = 0; i <= nb; ++i) {
|
---|
171 | new_nodes[0][i] = interpolateAlong(interp.a, frontLength * (double)(i) / (double)(nb));
|
---|
172 | new_nodes[1][i] = interpolateAlong(interp.b, backLength * (double)(i) / (double)(nb));
|
---|
173 | commands.add(new AddCommand(new_nodes[0][i]));
|
---|
174 | commands.add(new AddCommand(new_nodes[1][i]));
|
---|
175 | }
|
---|
176 |
|
---|
177 | // create a new relation for addressing
|
---|
178 | Relation relatedStreet = new Relation();
|
---|
179 | relatedStreet.put("type", "relatedStreet");
|
---|
180 | if (streetName != null) {
|
---|
181 | relatedStreet.put("name", streetName);
|
---|
182 | }
|
---|
183 | // note that we don't actually add the street member to the relation, as
|
---|
184 | // the name isn't unambiguous and it could cause confusion if the editor were
|
---|
185 | // to automatically select one which wasn't the one the user intended.
|
---|
186 |
|
---|
187 | // assemble new quadrilateral, closed ways
|
---|
188 | for (int i = 0; i < nb; ++i) {
|
---|
189 | Way terr = new Way();
|
---|
190 | // Using Way.nodes.add rather than Way.addNode because the latter doesn't
|
---|
191 | // exist in older versions of JOSM.
|
---|
192 | terr.nodes.add(new_nodes[0][i]);
|
---|
193 | terr.nodes.add(new_nodes[0][i+1]);
|
---|
194 | terr.nodes.add(new_nodes[1][i+1]);
|
---|
195 | terr.nodes.add(new_nodes[1][i]);
|
---|
196 | terr.nodes.add(new_nodes[0][i]);
|
---|
197 | terr.put("addr:housenumber", "" + (from + i * step));
|
---|
198 | terr.put("building", "yes");
|
---|
199 | if (streetName != null) {
|
---|
200 | terr.put("addr:street", streetName);
|
---|
201 | }
|
---|
202 | relatedStreet.members.add(new RelationMember("house", terr));
|
---|
203 | ways.add(terr);
|
---|
204 | commands.add(new AddCommand(terr));
|
---|
205 | }
|
---|
206 |
|
---|
207 | commands.add(new AddCommand(relatedStreet));
|
---|
208 |
|
---|
209 | Main.main.undoRedo.add(new SequenceCommand(tr("Terrace"), commands));
|
---|
210 | Main.ds.setSelected(ways);
|
---|
211 | }
|
---|
212 |
|
---|
213 | /**
|
---|
214 | * Creates a node at a certain distance along a way, as calculated by the
|
---|
215 | * great circle distance.
|
---|
216 | *
|
---|
217 | * Note that this really isn't an efficient way to do this and leads to
|
---|
218 | * O(N^2) running time for the main algorithm, but its simple and easy
|
---|
219 | * to understand, and probably won't matter for reasonable-sized ways.
|
---|
220 | *
|
---|
221 | * @param w The way to interpolate.
|
---|
222 | * @param l The length at which to place the node.
|
---|
223 | * @return A node at a distance l along w from the first point.
|
---|
224 | */
|
---|
225 | private Node interpolateAlong(Way w, double l) {
|
---|
226 | Node n = null;
|
---|
227 | for (Pair<Node,Node> p : w.getNodePairs(false)) {
|
---|
228 | final double seg_length = p.a.coor.greatCircleDistance(p.b.coor);
|
---|
229 | if (l <= seg_length) {
|
---|
230 | n = interpolateNode(p.a, p.b, l / seg_length);
|
---|
231 | break;
|
---|
232 | } else {
|
---|
233 | l -= seg_length;
|
---|
234 | }
|
---|
235 | }
|
---|
236 | if (n == null) {
|
---|
237 | // sometimes there is a small overshoot due to numerical roundoff, so we just
|
---|
238 | // set these cases to be equal to the last node. its not pretty, but it works ;-)
|
---|
239 | n = w.nodes.get(w.nodes.size() - 1);
|
---|
240 | }
|
---|
241 | return n;
|
---|
242 | }
|
---|
243 |
|
---|
244 | /**
|
---|
245 | * Calculates the great circle length of a way by summing the great circle
|
---|
246 | * distance of each pair of nodes.
|
---|
247 | *
|
---|
248 | * @param w The way to calculate length of.
|
---|
249 | * @return The length of the way.
|
---|
250 | */
|
---|
251 | private double wayLength(Way w) {
|
---|
252 | double length = 0.0;
|
---|
253 | for (Pair<Node,Node> p : w.getNodePairs(false)) {
|
---|
254 | length += p.a.coor.greatCircleDistance(p.b.coor);
|
---|
255 | }
|
---|
256 | return length;
|
---|
257 | }
|
---|
258 |
|
---|
259 | /**
|
---|
260 | * Given a way, try and find a definite front and back by looking at the
|
---|
261 | * segments to find the "sides". Sides are assumed to be single segments
|
---|
262 | * which cannot be contiguous.
|
---|
263 | *
|
---|
264 | * @param w The way to analyse.
|
---|
265 | * @return A pair of ways (front, back) pointing in the same directions.
|
---|
266 | */
|
---|
267 | private Pair<Way, Way> findFrontAndBack(Way w) {
|
---|
268 | // calculate the "side-ness" score for each segment of the way
|
---|
269 | double[] sideness = calculateSideness(w);
|
---|
270 |
|
---|
271 | // find the largest two sidenesses which are not contiguous
|
---|
272 | int[] indexes = sortedIndexes(sideness);
|
---|
273 | int side1 = indexes[0];
|
---|
274 | int side2 = indexes[1];
|
---|
275 | // if side2 is contiguous with side1 then look further down the
|
---|
276 | // list. we know there are at least 4 sides, as anything smaller
|
---|
277 | // than a quadrilateral would have been rejected at an earlier
|
---|
278 | // stage.
|
---|
279 | if (Math.abs(side1 - side2) < 2) {
|
---|
280 | side2 = indexes[2];
|
---|
281 | }
|
---|
282 | if (Math.abs(side1 - side2) < 2) {
|
---|
283 | side2 = indexes[3];
|
---|
284 | }
|
---|
285 |
|
---|
286 | // if the second side has a shorter length and an approximately equal
|
---|
287 | // sideness then its better to choose the shorter, as with quadrilaterals
|
---|
288 | // created using the orthogonalise tool the sideness will be about the
|
---|
289 | // same for all sides.
|
---|
290 | if (sideLength(w, side1) > sideLength(w, side1 + 1) &&
|
---|
291 | Math.abs(sideness[side1] - sideness[side1 + 1]) < 0.001) {
|
---|
292 | side1 = side1 + 1;
|
---|
293 | side2 = (side2 + 1) % (w.nodes.size() - 1);
|
---|
294 | }
|
---|
295 |
|
---|
296 | // swap side1 and side2 into sorted order.
|
---|
297 | if (side1 > side2) {
|
---|
298 | // i can't believe i have to write swap() myself - surely java standard
|
---|
299 | // library has this somewhere??!!?ONE!
|
---|
300 | int tmp = side2;
|
---|
301 | side2 = side1;
|
---|
302 | side1 = tmp;
|
---|
303 | }
|
---|
304 |
|
---|
305 | Way front = new Way();
|
---|
306 | Way back = new Way();
|
---|
307 | for (int i = side2 + 1; i < w.nodes.size() - 1; ++i) {
|
---|
308 | front.nodes.add(w.nodes.get(i));
|
---|
309 | }
|
---|
310 | for (int i = 0; i <= side1; ++i) {
|
---|
311 | front.nodes.add(w.nodes.get(i));
|
---|
312 | }
|
---|
313 | // add the back in reverse order so that the front and back ways point
|
---|
314 | // in the same direction.
|
---|
315 | for (int i = side2; i > side1; --i) {
|
---|
316 | back.nodes.add(w.nodes.get(i));
|
---|
317 | }
|
---|
318 |
|
---|
319 | return new Pair<Way, Way>(front, back);
|
---|
320 | }
|
---|
321 |
|
---|
322 | /**
|
---|
323 | * Calculate the length of a side (from node i to i+1) in a way.
|
---|
324 | */
|
---|
325 | private double sideLength(Way w, int i) {
|
---|
326 | Node a = w.nodes.get(i);
|
---|
327 | Node b = w.nodes.get(i+1);
|
---|
328 | return a.coor.greatCircleDistance(b.coor);
|
---|
329 | }
|
---|
330 |
|
---|
331 | /**
|
---|
332 | * Given an array of doubles (but this could made generic very easily) sort
|
---|
333 | * into order and return the array of indexes such that, for a returned array
|
---|
334 | * x, a[x[i]] is sorted for ascending index i.
|
---|
335 | *
|
---|
336 | * This isn't efficient at all, but should be fine for the small arrays we're
|
---|
337 | * expecting. If this gets slow - replace it with some more efficient algorithm.
|
---|
338 | *
|
---|
339 | * @param a The array to sort.
|
---|
340 | * @return An array of indexes, the same size as the input, such that a[x[i]]
|
---|
341 | * is in sorted order.
|
---|
342 | */
|
---|
343 | private int[] sortedIndexes(final double[] a) {
|
---|
344 | class SortWithIndex implements Comparable<SortWithIndex> {
|
---|
345 | public double x;
|
---|
346 | public int i;
|
---|
347 | public SortWithIndex(double a, int b) {
|
---|
348 | x = a; i = b;
|
---|
349 | }
|
---|
350 | public int compareTo(SortWithIndex o) {
|
---|
351 | return Double.compare(x, o.x);
|
---|
352 | };
|
---|
353 | }
|
---|
354 |
|
---|
355 | final int length = a.length;
|
---|
356 | ArrayList<SortWithIndex> sortable = new ArrayList<SortWithIndex>(length);
|
---|
357 | for (int i = 0; i < length; ++i) {
|
---|
358 | sortable.add(new SortWithIndex(a[i], i));
|
---|
359 | }
|
---|
360 | Collections.sort(sortable);
|
---|
361 |
|
---|
362 | int[] indexes = new int[length];
|
---|
363 | for (int i = 0; i < length; ++i) {
|
---|
364 | indexes[i] = sortable.get(i).i;
|
---|
365 | }
|
---|
366 |
|
---|
367 | return indexes;
|
---|
368 | }
|
---|
369 |
|
---|
370 | /**
|
---|
371 | * Calculate "sideness" metric for each segment in a way.
|
---|
372 | */
|
---|
373 | private double[] calculateSideness(Way w) {
|
---|
374 | final int length = w.nodes.size() - 1;
|
---|
375 | double[] sideness = new double[length];
|
---|
376 |
|
---|
377 | sideness[0] = calculateSideness(
|
---|
378 | w.nodes.get(length - 1), w.nodes.get(0),
|
---|
379 | w.nodes.get(1), w.nodes.get(2));
|
---|
380 | for (int i = 1; i < length - 1; ++i) {
|
---|
381 | sideness[i] = calculateSideness(
|
---|
382 | w.nodes.get(i-1), w.nodes.get(i),
|
---|
383 | w.nodes.get(i+1), w.nodes.get(i+2));
|
---|
384 | }
|
---|
385 | sideness[length-1] = calculateSideness(
|
---|
386 | w.nodes.get(length - 2), w.nodes.get(length - 1),
|
---|
387 | w.nodes.get(length), w.nodes.get(1));
|
---|
388 |
|
---|
389 | return sideness;
|
---|
390 | }
|
---|
391 |
|
---|
392 | /**
|
---|
393 | * Calculate sideness of a single segment given the nodes which make up that
|
---|
394 | * segment and its previous and next segments in order. Sideness is calculated
|
---|
395 | * for the segment b-c.
|
---|
396 | */
|
---|
397 | private double calculateSideness(Node a, Node b, Node c, Node d) {
|
---|
398 | final double ndx = b.coor.getX() - a.coor.getX();
|
---|
399 | final double pdx = d.coor.getX() - c.coor.getX();
|
---|
400 | final double ndy = b.coor.getY() - a.coor.getY();
|
---|
401 | final double pdy = d.coor.getY() - c.coor.getY();
|
---|
402 |
|
---|
403 | return (ndx * pdx + ndy * pdy) /
|
---|
404 | Math.sqrt((ndx * ndx + ndy * ndy) * (pdx * pdx + pdy * pdy));
|
---|
405 | }
|
---|
406 |
|
---|
407 | /**
|
---|
408 | * Dialog box to allow users to input housenumbers in a nice way.
|
---|
409 | */
|
---|
410 | class HouseNumberDialog extends JPanel {
|
---|
411 | private SpinnerNumberModel lo, hi;
|
---|
412 | private JSpinner clo, chi;
|
---|
413 | private Choice step;
|
---|
414 | private AutoCompleteComboBox street;
|
---|
415 |
|
---|
416 | public HouseNumberDialog() {
|
---|
417 | super(new GridBagLayout());
|
---|
418 | lo = new SpinnerNumberModel(1, 1, 1, 1);
|
---|
419 | hi = new SpinnerNumberModel(1, 1, null, 1);
|
---|
420 | step = new Choice();
|
---|
421 | step.add(tr("All"));
|
---|
422 | step.add(tr("Even"));
|
---|
423 | step.add(tr("Odd"));
|
---|
424 | clo = new JSpinner(lo);
|
---|
425 | chi = new JSpinner(hi);
|
---|
426 |
|
---|
427 | lo.addChangeListener(new ChangeListener() {
|
---|
428 | public void stateChanged(ChangeEvent e) {
|
---|
429 | hi.setMinimum((Integer)lo.getNumber());
|
---|
430 | }
|
---|
431 | });
|
---|
432 | hi.addChangeListener(new ChangeListener() {
|
---|
433 | public void stateChanged(ChangeEvent e) {
|
---|
434 | lo.setMaximum((Integer)hi.getNumber());
|
---|
435 | }
|
---|
436 | });
|
---|
437 | step.addItemListener(new ItemListener() {
|
---|
438 | public void itemStateChanged(ItemEvent e) {
|
---|
439 | if (step.getSelectedItem() == tr("All")) {
|
---|
440 | hi.setStepSize(1);
|
---|
441 | lo.setStepSize(1);
|
---|
442 | } else {
|
---|
443 | int odd_or_even = 0;
|
---|
444 | int min = 0;
|
---|
445 |
|
---|
446 | if (step.getSelectedItem() == tr("Even")) {
|
---|
447 | odd_or_even = 0;
|
---|
448 | min = 2;
|
---|
449 | } else {
|
---|
450 | odd_or_even = 1;
|
---|
451 | min = 1;
|
---|
452 | }
|
---|
453 |
|
---|
454 | if ((lo.getNumber().intValue() & 1) != odd_or_even) {
|
---|
455 | int nextval = lo.getNumber().intValue() - 1;
|
---|
456 | lo.setValue((nextval > min) ? nextval : min);
|
---|
457 | }
|
---|
458 | if ((hi.getNumber().intValue() & 1) != odd_or_even) {
|
---|
459 | int nextval = hi.getNumber().intValue() - 1;
|
---|
460 | hi.setValue((nextval > min) ? nextval : min);
|
---|
461 | }
|
---|
462 | lo.setMinimum(min);
|
---|
463 | hi.setStepSize(2);
|
---|
464 | lo.setStepSize(2);
|
---|
465 | }
|
---|
466 | }
|
---|
467 | });
|
---|
468 |
|
---|
469 | final TreeSet<String> names = createAutoCompletionInfo();
|
---|
470 |
|
---|
471 | street = new AutoCompleteComboBox();
|
---|
472 | street.setPossibleItems(names);
|
---|
473 | street.setEditable(true);
|
---|
474 | street.setSelectedItem(null);
|
---|
475 |
|
---|
476 | JFormattedTextField x;
|
---|
477 | x = ((JSpinner.DefaultEditor)clo.getEditor()).getTextField();
|
---|
478 | x.setColumns(5);
|
---|
479 | x = ((JSpinner.DefaultEditor)chi.getEditor()).getTextField();
|
---|
480 | x.setColumns(5);
|
---|
481 | addLabelled(tr("Highest number") + ": ", chi);
|
---|
482 | addLabelled(tr("Lowest number") + ": ", clo);
|
---|
483 | addLabelled(tr("Interpolation") + ": ", step);
|
---|
484 | addLabelled(tr("Street name") + " (" + tr("Optional") + "): ", street);
|
---|
485 | }
|
---|
486 |
|
---|
487 | private void addLabelled(String str, Component c) {
|
---|
488 | JLabel label = new JLabel(str);
|
---|
489 | add(label, GBC.std());
|
---|
490 | label.setLabelFor(c);
|
---|
491 | add(c, GBC.eol());
|
---|
492 | }
|
---|
493 |
|
---|
494 | public int numberFrom() {
|
---|
495 | return lo.getNumber().intValue();
|
---|
496 | }
|
---|
497 |
|
---|
498 | public int numberTo() {
|
---|
499 | return hi.getNumber().intValue();
|
---|
500 | }
|
---|
501 |
|
---|
502 | public int stepSize() {
|
---|
503 | return (step.getSelectedItem() == tr("All")) ? 1 : 2;
|
---|
504 | }
|
---|
505 |
|
---|
506 | public String streetName() {
|
---|
507 | Object selected = street.getSelectedItem();
|
---|
508 | if (selected == null) {
|
---|
509 | return null;
|
---|
510 | } else {
|
---|
511 | String name = selected.toString();
|
---|
512 | if (name.length() == 0) {
|
---|
513 | return null;
|
---|
514 | } else {
|
---|
515 | return name;
|
---|
516 | }
|
---|
517 | }
|
---|
518 | }
|
---|
519 | }
|
---|
520 |
|
---|
521 | /**
|
---|
522 | * Generates a list of all visible names of highways in order to do
|
---|
523 | * autocompletion on the road name.
|
---|
524 | */
|
---|
525 | private TreeSet<String> createAutoCompletionInfo() {
|
---|
526 | final TreeSet<String> names = new TreeSet<String>();
|
---|
527 | for (OsmPrimitive osm : Main.ds.allNonDeletedPrimitives()) {
|
---|
528 | if (osm.keys != null &&
|
---|
529 | osm.keys.containsKey("highway") &&
|
---|
530 | osm.keys.containsKey("name")) {
|
---|
531 | names.add(osm.keys.get("name"));
|
---|
532 | }
|
---|
533 | }
|
---|
534 | return names;
|
---|
535 | }
|
---|
536 |
|
---|
537 | /**
|
---|
538 | * Creates a new node at the interpolated position between the argument
|
---|
539 | * nodes. Interpolates linearly in Lat/Lon coordinates.
|
---|
540 | *
|
---|
541 | * @param a First node, at which f=0.
|
---|
542 | * @param b Last node, at which f=1.
|
---|
543 | * @param f Fractional position between first and last nodes.
|
---|
544 | * @return A new node at the interpolated position.
|
---|
545 | */
|
---|
546 | private Node interpolateNode(Node a, Node b, double f) {
|
---|
547 | Node n = new Node(interpolateLatLon(a, b, f));
|
---|
548 | return n;
|
---|
549 | }
|
---|
550 |
|
---|
551 | /**
|
---|
552 | * Calculates the interpolated position between the argument nodes. Interpolates
|
---|
553 | * linearly in Lat/Lon coordinates.
|
---|
554 | *
|
---|
555 | * @param a First node, at which f=0.
|
---|
556 | * @param b Last node, at which f=1.
|
---|
557 | * @param f Fractional position between first and last nodes.
|
---|
558 | * @return The interpolated position.
|
---|
559 | */
|
---|
560 | private LatLon interpolateLatLon(Node a, Node b, double f) {
|
---|
561 | // this isn't quite right - we should probably be interpolating
|
---|
562 | // screen coordinates rather than lat/lon, but it doesn't seem to
|
---|
563 | // make a great deal of difference at the scale of most terraces.
|
---|
564 | return new LatLon(a.coor.lat() * (1.0 - f) + b.coor.lat() * f,
|
---|
565 | a.coor.lon() * (1.0 - f) + b.coor.lon() * f);
|
---|
566 | }
|
---|
567 | }
|
---|