source: josm/trunk/src/org/openstreetmap/josm/tools/Geometry.java@ 17732

Last change on this file since 17732 was 17141, checked in by GerdP, 4 years ago

see #19885: memory leak with "temporary" objects in validator and actions
next bunch of changes:

  • use ChangeNodesCommand instead of ChangeCommand
  • further simplifications
  • Property svn:eol-style set to native
File size: 64.8 KB
Line 
1// License: GPL. For details, see LICENSE file.
2package org.openstreetmap.josm.tools;
3
4import java.awt.geom.Area;
5import java.awt.geom.Line2D;
6import java.awt.geom.Path2D;
7import java.awt.geom.PathIterator;
8import java.awt.geom.Rectangle2D;
9import java.math.BigDecimal;
10import java.math.MathContext;
11import java.util.ArrayList;
12import java.util.Collection;
13import java.util.Collections;
14import java.util.Comparator;
15import java.util.Iterator;
16import java.util.LinkedHashSet;
17import java.util.List;
18import java.util.Set;
19import java.util.TreeSet;
20import java.util.function.Predicate;
21import java.util.stream.Collectors;
22
23import org.openstreetmap.josm.command.AddCommand;
24import org.openstreetmap.josm.command.ChangeNodesCommand;
25import org.openstreetmap.josm.command.Command;
26import org.openstreetmap.josm.data.coor.EastNorth;
27import org.openstreetmap.josm.data.coor.ILatLon;
28import org.openstreetmap.josm.data.osm.BBox;
29import org.openstreetmap.josm.data.osm.DataSet;
30import org.openstreetmap.josm.data.osm.INode;
31import org.openstreetmap.josm.data.osm.IPrimitive;
32import org.openstreetmap.josm.data.osm.IWay;
33import org.openstreetmap.josm.data.osm.MultipolygonBuilder;
34import org.openstreetmap.josm.data.osm.MultipolygonBuilder.JoinedPolygon;
35import org.openstreetmap.josm.data.osm.Node;
36import org.openstreetmap.josm.data.osm.NodePositionComparator;
37import org.openstreetmap.josm.data.osm.OsmPrimitive;
38import org.openstreetmap.josm.data.osm.Relation;
39import org.openstreetmap.josm.data.osm.Way;
40import org.openstreetmap.josm.data.osm.WaySegment;
41import org.openstreetmap.josm.data.osm.visitor.paint.relations.Multipolygon;
42import org.openstreetmap.josm.data.osm.visitor.paint.relations.Multipolygon.PolyData;
43import org.openstreetmap.josm.data.osm.visitor.paint.relations.MultipolygonCache;
44import org.openstreetmap.josm.data.projection.Projection;
45import org.openstreetmap.josm.data.projection.ProjectionRegistry;
46import org.openstreetmap.josm.data.projection.Projections;
47
48/**
49 * Some tools for geometry related tasks.
50 *
51 * @author viesturs
52 */
53public final class Geometry {
54
55 private Geometry() {
56 // Hide default constructor for utils classes
57 }
58
59 /**
60 * The result types for a {@link Geometry#polygonIntersection(Area, Area)} test
61 */
62 public enum PolygonIntersection {
63 /**
64 * The first polygon is inside the second one
65 */
66 FIRST_INSIDE_SECOND,
67 /**
68 * The second one is inside the first
69 */
70 SECOND_INSIDE_FIRST,
71 /**
72 * The polygons do not overlap
73 */
74 OUTSIDE,
75 /**
76 * The polygon borders cross each other
77 */
78 CROSSING
79 }
80
81 /** threshold value for size of intersection area given in east/north space */
82 public static final double INTERSECTION_EPS_EAST_NORTH = 1e-4;
83
84 /**
85 * Will find all intersection and add nodes there for list of given ways.
86 * Handles self-intersections too.
87 * And makes commands to add the intersection points to ways.
88 *
89 * Prerequisite: no two nodes have the same coordinates.
90 *
91 * @param ways a list of ways to test
92 * @param test if true, do not build list of Commands, just return nodes
93 * @param cmds list of commands, typically empty when handed to this method.
94 * Will be filled with commands that add intersection nodes to
95 * the ways.
96 * @return list of new nodes, if test is true the list might not contain all intersections
97 */
98 public static Set<Node> addIntersections(List<Way> ways, boolean test, List<Command> cmds) {
99
100 int n = ways.size();
101 @SuppressWarnings("unchecked")
102 List<Node>[] newNodes = new ArrayList[n];
103 BBox[] wayBounds = new BBox[n];
104 boolean[] changedWays = new boolean[n];
105
106 Set<Node> intersectionNodes = new LinkedHashSet<>();
107
108 //copy node arrays for local usage.
109 for (int pos = 0; pos < n; pos++) {
110 newNodes[pos] = new ArrayList<>(ways.get(pos).getNodes());
111 wayBounds[pos] = ways.get(pos).getBBox();
112 changedWays[pos] = false;
113 }
114
115 DataSet dataset = ways.get(0).getDataSet();
116
117 //iterate over all way pairs and introduce the intersections
118 Comparator<Node> coordsComparator = new NodePositionComparator();
119 for (int seg1Way = 0; seg1Way < n; seg1Way++) {
120 for (int seg2Way = seg1Way; seg2Way < n; seg2Way++) {
121
122 //do not waste time on bounds that do not intersect
123 if (!wayBounds[seg1Way].intersects(wayBounds[seg2Way])) {
124 continue;
125 }
126
127 List<Node> way1Nodes = newNodes[seg1Way];
128 List<Node> way2Nodes = newNodes[seg2Way];
129
130 //iterate over primary segmemt
131 for (int seg1Pos = 0; seg1Pos + 1 < way1Nodes.size(); seg1Pos++) {
132
133 //iterate over secondary segment
134 int seg2Start = seg1Way != seg2Way ? 0 : seg1Pos + 2; //skip the adjacent segment
135
136 for (int seg2Pos = seg2Start; seg2Pos + 1 < way2Nodes.size(); seg2Pos++) {
137
138 //need to get them again every time, because other segments may be changed
139 Node seg1Node1 = way1Nodes.get(seg1Pos);
140 Node seg1Node2 = way1Nodes.get(seg1Pos + 1);
141 Node seg2Node1 = way2Nodes.get(seg2Pos);
142 Node seg2Node2 = way2Nodes.get(seg2Pos + 1);
143
144 int commonCount = 0;
145 //test if we have common nodes to add.
146 if (seg1Node1 == seg2Node1 || seg1Node1 == seg2Node2) {
147 commonCount++;
148
149 if (seg1Way == seg2Way &&
150 seg1Pos == 0 &&
151 seg2Pos == way2Nodes.size() -2) {
152 //do not add - this is first and last segment of the same way.
153 } else {
154 intersectionNodes.add(seg1Node1);
155 }
156 }
157
158 if (seg1Node2 == seg2Node1 || seg1Node2 == seg2Node2) {
159 commonCount++;
160
161 intersectionNodes.add(seg1Node2);
162 }
163
164 //no common nodes - find intersection
165 if (commonCount == 0) {
166 EastNorth intersection = getSegmentSegmentIntersection(
167 seg1Node1.getEastNorth(), seg1Node2.getEastNorth(),
168 seg2Node1.getEastNorth(), seg2Node2.getEastNorth());
169
170 if (intersection != null) {
171 Node newNode = new Node(ProjectionRegistry.getProjection().eastNorth2latlon(intersection));
172 Node intNode = newNode;
173 boolean insertInSeg1 = false;
174 boolean insertInSeg2 = false;
175 //find if the intersection point is at end point of one of the segments, if so use that point
176
177 //segment 1
178 if (coordsComparator.compare(newNode, seg1Node1) == 0) {
179 intNode = seg1Node1;
180 } else if (coordsComparator.compare(newNode, seg1Node2) == 0) {
181 intNode = seg1Node2;
182 } else {
183 insertInSeg1 = true;
184 }
185
186 //segment 2
187 if (coordsComparator.compare(newNode, seg2Node1) == 0) {
188 intNode = seg2Node1;
189 } else if (coordsComparator.compare(newNode, seg2Node2) == 0) {
190 intNode = seg2Node2;
191 } else {
192 insertInSeg2 = true;
193 }
194
195 if (test) {
196 intersectionNodes.add(intNode);
197 return intersectionNodes;
198 }
199
200 if (insertInSeg1) {
201 way1Nodes.add(seg1Pos +1, intNode);
202 changedWays[seg1Way] = true;
203
204 //fix seg2 position, as indexes have changed, seg2Pos is always bigger than seg1Pos on the same segment.
205 if (seg2Way == seg1Way) {
206 seg2Pos++;
207 }
208 }
209
210 if (insertInSeg2) {
211 way2Nodes.add(seg2Pos +1, intNode);
212 changedWays[seg2Way] = true;
213
214 //Do not need to compare again to already split segment
215 seg2Pos++;
216 }
217
218 intersectionNodes.add(intNode);
219
220 if (intNode == newNode) {
221 cmds.add(new AddCommand(dataset, intNode));
222 }
223 }
224 } else if (test && !intersectionNodes.isEmpty())
225 return intersectionNodes;
226 }
227 }
228 }
229 }
230
231
232 for (int pos = 0; pos < ways.size(); pos++) {
233 if (changedWays[pos]) {
234 cmds.add(new ChangeNodesCommand(dataset, ways.get(pos), newNodes[pos]));
235 }
236 }
237
238 return intersectionNodes;
239 }
240
241 /**
242 * Tests if given point is to the right side of path consisting of 3 points.
243 *
244 * (Imagine the path is continued beyond the endpoints, so you get two rays
245 * starting from lineP2 and going through lineP1 and lineP3 respectively
246 * which divide the plane into two parts. The test returns true, if testPoint
247 * lies in the part that is to the right when traveling in the direction
248 * lineP1, lineP2, lineP3.)
249 *
250 * @param <N> type of node
251 * @param lineP1 first point in path
252 * @param lineP2 second point in path
253 * @param lineP3 third point in path
254 * @param testPoint point to test
255 * @return true if to the right side, false otherwise
256 */
257 public static <N extends INode> boolean isToTheRightSideOfLine(N lineP1, N lineP2, N lineP3, N testPoint) {
258 boolean pathBendToRight = angleIsClockwise(lineP1, lineP2, lineP3);
259 boolean rightOfSeg1 = angleIsClockwise(lineP1, lineP2, testPoint);
260 boolean rightOfSeg2 = angleIsClockwise(lineP2, lineP3, testPoint);
261
262 if (pathBendToRight)
263 return rightOfSeg1 && rightOfSeg2;
264 else
265 return !(!rightOfSeg1 && !rightOfSeg2);
266 }
267
268 /**
269 * This method tests if secondNode is clockwise to first node.
270 * @param <N> type of node
271 * @param commonNode starting point for both vectors
272 * @param firstNode first vector end node
273 * @param secondNode second vector end node
274 * @return true if first vector is clockwise before second vector.
275 */
276 public static <N extends INode> boolean angleIsClockwise(N commonNode, N firstNode, N secondNode) {
277 return angleIsClockwise(commonNode.getEastNorth(), firstNode.getEastNorth(), secondNode.getEastNorth());
278 }
279
280 /**
281 * Finds the intersection of two line segments.
282 * @param p1 the coordinates of the start point of the first specified line segment
283 * @param p2 the coordinates of the end point of the first specified line segment
284 * @param p3 the coordinates of the start point of the second specified line segment
285 * @param p4 the coordinates of the end point of the second specified line segment
286 * @return EastNorth null if no intersection was found, the EastNorth coordinates of the intersection otherwise
287 */
288 public static EastNorth getSegmentSegmentIntersection(EastNorth p1, EastNorth p2, EastNorth p3, EastNorth p4) {
289
290 CheckParameterUtil.ensureThat(p1.isValid(), () -> p1 + " invalid");
291 CheckParameterUtil.ensureThat(p2.isValid(), () -> p2 + " invalid");
292 CheckParameterUtil.ensureThat(p3.isValid(), () -> p3 + " invalid");
293 CheckParameterUtil.ensureThat(p4.isValid(), () -> p4 + " invalid");
294
295 double x1 = p1.getX();
296 double y1 = p1.getY();
297 double x2 = p2.getX();
298 double y2 = p2.getY();
299 double x3 = p3.getX();
300 double y3 = p3.getY();
301 double x4 = p4.getX();
302 double y4 = p4.getY();
303
304 //TODO: do this locally.
305 //TODO: remove this check after careful testing
306 if (!Line2D.linesIntersect(x1, y1, x2, y2, x3, y3, x4, y4)) return null;
307
308 // solve line-line intersection in parametric form:
309 // (x1,y1) + (x2-x1,y2-y1)* u = (x3,y3) + (x4-x3,y4-y3)* v
310 // (x2-x1,y2-y1)*u - (x4-x3,y4-y3)*v = (x3-x1,y3-y1)
311 // if 0<= u,v <=1, intersection exists at ( x1+ (x2-x1)*u, y1 + (y2-y1)*u )
312
313 double a1 = x2 - x1;
314 double b1 = x3 - x4;
315 double c1 = x3 - x1;
316
317 double a2 = y2 - y1;
318 double b2 = y3 - y4;
319 double c2 = y3 - y1;
320
321 // Solve the equations
322 double det = a1*b2 - a2*b1;
323
324 double uu = b2*c1 - b1*c2;
325 double vv = a1*c2 - a2*c1;
326 double mag = Math.abs(uu)+Math.abs(vv);
327
328 if (Math.abs(det) > 1e-12 * mag) {
329 double u = uu/det, v = vv/det;
330 if (u > -1e-8 && u < 1+1e-8 && v > -1e-8 && v < 1+1e-8) {
331 if (u < 0) u = 0;
332 if (u > 1) u = 1.0;
333 return new EastNorth(x1+a1*u, y1+a2*u);
334 } else {
335 return null;
336 }
337 } else {
338 // parallel lines
339 return null;
340 }
341 }
342
343 /**
344 * Finds the intersection of two lines of infinite length.
345 *
346 * @param p1 first point on first line
347 * @param p2 second point on first line
348 * @param p3 first point on second line
349 * @param p4 second point on second line
350 * @return EastNorth null if no intersection was found, the coordinates of the intersection otherwise
351 * @throws IllegalArgumentException if a parameter is null or without valid coordinates
352 */
353 public static EastNorth getLineLineIntersection(EastNorth p1, EastNorth p2, EastNorth p3, EastNorth p4) {
354
355 CheckParameterUtil.ensureThat(p1.isValid(), () -> p1 + " invalid");
356 CheckParameterUtil.ensureThat(p2.isValid(), () -> p2 + " invalid");
357 CheckParameterUtil.ensureThat(p3.isValid(), () -> p3 + " invalid");
358 CheckParameterUtil.ensureThat(p4.isValid(), () -> p4 + " invalid");
359
360 // Basically, the formula from wikipedia is used:
361 // https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
362 // However, large numbers lead to rounding errors (see #10286).
363 // To avoid this, p1 is first subtracted from each of the points:
364 // p1' = 0
365 // p2' = p2 - p1
366 // p3' = p3 - p1
367 // p4' = p4 - p1
368 // In the end, p1 is added to the intersection point of segment p1'/p2'
369 // and segment p3'/p4'.
370
371 // Convert line from (point, point) form to ax+by=c
372 double a1 = p2.getY() - p1.getY();
373 double b1 = p1.getX() - p2.getX();
374
375 double a2 = p4.getY() - p3.getY();
376 double b2 = p3.getX() - p4.getX();
377
378 // Solve the equations
379 double det = a1 * b2 - a2 * b1;
380 if (det == 0)
381 return null; // Lines are parallel
382
383 double c2 = (p4.getX() - p1.getX()) * (p3.getY() - p1.getY()) - (p3.getX() - p1.getX()) * (p4.getY() - p1.getY());
384
385 return new EastNorth(b1 * c2 / det + p1.getX(), -a1 * c2 / det + p1.getY());
386 }
387
388 /**
389 * Check if the segment p1 - p2 is parallel to p3 - p4
390 * @param p1 First point for first segment
391 * @param p2 Second point for first segment
392 * @param p3 First point for second segment
393 * @param p4 Second point for second segment
394 * @return <code>true</code> if they are parallel or close to parallel
395 */
396 public static boolean segmentsParallel(EastNorth p1, EastNorth p2, EastNorth p3, EastNorth p4) {
397
398 CheckParameterUtil.ensureThat(p1.isValid(), () -> p1 + " invalid");
399 CheckParameterUtil.ensureThat(p2.isValid(), () -> p2 + " invalid");
400 CheckParameterUtil.ensureThat(p3.isValid(), () -> p3 + " invalid");
401 CheckParameterUtil.ensureThat(p4.isValid(), () -> p4 + " invalid");
402
403 // Convert line from (point, point) form to ax+by=c
404 double a1 = p2.getY() - p1.getY();
405 double b1 = p1.getX() - p2.getX();
406
407 double a2 = p4.getY() - p3.getY();
408 double b2 = p3.getX() - p4.getX();
409
410 // Solve the equations
411 double det = a1 * b2 - a2 * b1;
412 // remove influence of of scaling factor
413 det /= Math.sqrt(a1*a1 + b1*b1) * Math.sqrt(a2*a2 + b2*b2);
414 return Math.abs(det) < 1e-3;
415 }
416
417 private static EastNorth closestPointTo(EastNorth p1, EastNorth p2, EastNorth point, boolean segmentOnly) {
418 CheckParameterUtil.ensureParameterNotNull(p1, "p1");
419 CheckParameterUtil.ensureParameterNotNull(p2, "p2");
420 CheckParameterUtil.ensureParameterNotNull(point, "point");
421
422 double ldx = p2.getX() - p1.getX();
423 double ldy = p2.getY() - p1.getY();
424
425 //segment zero length
426 if (ldx == 0 && ldy == 0)
427 return p1;
428
429 double pdx = point.getX() - p1.getX();
430 double pdy = point.getY() - p1.getY();
431
432 double offset = (pdx * ldx + pdy * ldy) / (ldx * ldx + ldy * ldy);
433
434 if (segmentOnly && offset <= 0)
435 return p1;
436 else if (segmentOnly && offset >= 1)
437 return p2;
438 else
439 return p1.interpolate(p2, offset);
440 }
441
442 /**
443 * Calculates closest point to a line segment.
444 * @param segmentP1 First point determining line segment
445 * @param segmentP2 Second point determining line segment
446 * @param point Point for which a closest point is searched on line segment [P1,P2]
447 * @return segmentP1 if it is the closest point, segmentP2 if it is the closest point,
448 * a new point if closest point is between segmentP1 and segmentP2.
449 * @see #closestPointToLine
450 * @since 3650
451 */
452 public static EastNorth closestPointToSegment(EastNorth segmentP1, EastNorth segmentP2, EastNorth point) {
453 return closestPointTo(segmentP1, segmentP2, point, true);
454 }
455
456 /**
457 * Calculates closest point to a line.
458 * @param lineP1 First point determining line
459 * @param lineP2 Second point determining line
460 * @param point Point for which a closest point is searched on line (P1,P2)
461 * @return The closest point found on line. It may be outside the segment [P1,P2].
462 * @see #closestPointToSegment
463 * @since 4134
464 */
465 public static EastNorth closestPointToLine(EastNorth lineP1, EastNorth lineP2, EastNorth point) {
466 return closestPointTo(lineP1, lineP2, point, false);
467 }
468
469 /**
470 * This method tests if secondNode is clockwise to first node.
471 *
472 * The line through the two points commonNode and firstNode divides the
473 * plane into two parts. The test returns true, if secondNode lies in
474 * the part that is to the right when traveling in the direction from
475 * commonNode to firstNode.
476 *
477 * @param commonNode starting point for both vectors
478 * @param firstNode first vector end node
479 * @param secondNode second vector end node
480 * @return true if first vector is clockwise before second vector.
481 */
482 public static boolean angleIsClockwise(EastNorth commonNode, EastNorth firstNode, EastNorth secondNode) {
483
484 CheckParameterUtil.ensureThat(commonNode.isValid(), () -> commonNode + " invalid");
485 CheckParameterUtil.ensureThat(firstNode.isValid(), () -> firstNode + " invalid");
486 CheckParameterUtil.ensureThat(secondNode.isValid(), () -> secondNode + " invalid");
487
488 double dy1 = firstNode.getY() - commonNode.getY();
489 double dy2 = secondNode.getY() - commonNode.getY();
490 double dx1 = firstNode.getX() - commonNode.getX();
491 double dx2 = secondNode.getX() - commonNode.getX();
492
493 return dy1 * dx2 - dx1 * dy2 > 0;
494 }
495
496 /**
497 * Returns the Area of a polygon, from its list of nodes.
498 * @param polygon List of nodes forming polygon
499 * @return Area for the given list of nodes (EastNorth coordinates)
500 * @since 6841
501 */
502 public static Area getArea(List<? extends INode> polygon) {
503 Path2D path = new Path2D.Double();
504
505 boolean begin = true;
506 for (INode n : polygon) {
507 EastNorth en = n.getEastNorth();
508 if (en != null) {
509 if (begin) {
510 path.moveTo(en.getX(), en.getY());
511 begin = false;
512 } else {
513 path.lineTo(en.getX(), en.getY());
514 }
515 }
516 }
517 if (!begin) {
518 path.closePath();
519 }
520
521 return new Area(path);
522 }
523
524 /**
525 * Builds a path from a list of nodes
526 * @param polygon Nodes, forming a closed polygon
527 * @param path2d path to add to; can be null, then a new path is created
528 * @return the path (LatLon coordinates)
529 * @since 13638 (signature)
530 */
531 public static Path2D buildPath2DLatLon(List<? extends ILatLon> polygon, Path2D path2d) {
532 Path2D path = path2d != null ? path2d : new Path2D.Double();
533 boolean begin = true;
534 for (ILatLon n : polygon) {
535 if (begin) {
536 path.moveTo(n.lon(), n.lat());
537 begin = false;
538 } else {
539 path.lineTo(n.lon(), n.lat());
540 }
541 }
542 if (!begin) {
543 path.closePath();
544 }
545 return path;
546 }
547
548 /**
549 * Calculate area in east/north space for given primitive. Uses {@link MultipolygonCache} for multipolygon relations.
550 * @param p the primitive
551 * @return the area in east/north space, might be empty if the primitive is incomplete or not closed or a node
552 * since 15938
553 */
554 public static Area getAreaEastNorth(IPrimitive p) {
555 if (p instanceof Way && ((Way) p).isClosed()) {
556 return Geometry.getArea(((Way) p).getNodes());
557 }
558 if (p instanceof Relation && p.isMultipolygon() && !p.isIncomplete()) {
559 Multipolygon mp = MultipolygonCache.getInstance().get((Relation) p);
560 if (mp.getOpenEnds().isEmpty()) {
561 Path2D path = new Path2D.Double();
562 path.setWindingRule(Path2D.WIND_EVEN_ODD);
563 for (PolyData pd : mp.getCombinedPolygons()) {
564 path.append(pd.get(), false);
565 }
566 return new Area(path);
567 }
568 }
569 return new Area();
570 }
571
572 /**
573 * Returns the Area of a polygon, from the multipolygon relation.
574 * @param multipolygon the multipolygon relation
575 * @return Area for the multipolygon (LatLon coordinates)
576 */
577 public static Area getAreaLatLon(Relation multipolygon) {
578 final Multipolygon mp = MultipolygonCache.getInstance().get(multipolygon);
579 Path2D path = new Path2D.Double();
580 path.setWindingRule(Path2D.WIND_EVEN_ODD);
581 for (Multipolygon.PolyData pd : mp.getCombinedPolygons()) {
582 buildPath2DLatLon(pd.getNodes(), path);
583 for (Multipolygon.PolyData pdInner : pd.getInners()) {
584 buildPath2DLatLon(pdInner.getNodes(), path);
585 }
586 }
587 return new Area(path);
588 }
589
590 /**
591 * Tests if two polygons intersect.
592 * @param first List of nodes forming first polygon
593 * @param second List of nodes forming second polygon
594 * @return intersection kind
595 */
596 public static PolygonIntersection polygonIntersection(List<? extends INode> first, List<? extends INode> second) {
597 Area a1 = getArea(first);
598 Area a2 = getArea(second);
599 return polygonIntersection(a1, a2, INTERSECTION_EPS_EAST_NORTH);
600 }
601
602 /**
603 * Tests if two polygons intersect. It is assumed that the area is given in East North points.
604 * @param a1 Area of first polygon
605 * @param a2 Area of second polygon
606 * @return intersection kind
607 * @since 6841
608 */
609 public static PolygonIntersection polygonIntersection(Area a1, Area a2) {
610 return polygonIntersection(a1, a2, INTERSECTION_EPS_EAST_NORTH);
611 }
612
613 /**
614 * Tests if two polygons intersect.
615 * @param a1 Area of first polygon
616 * @param a2 Area of second polygon
617 * @param eps an area threshold, everything below is considered an empty intersection
618 * @return intersection kind
619 */
620 public static PolygonIntersection polygonIntersection(Area a1, Area a2, double eps) {
621 return polygonIntersectionResult(a1, a2, eps).a;
622 }
623
624 /**
625 * Calculate intersection area and kind of intersection between two polygons.
626 * @param a1 Area of first polygon
627 * @param a2 Area of second polygon
628 * @param eps an area threshold, everything below is considered an empty intersection
629 * @return pair with intersection kind and intersection area (never null, but maybe empty)
630 * @since 15938
631 */
632 public static Pair<PolygonIntersection, Area> polygonIntersectionResult(Area a1, Area a2, double eps) {
633 Area inter = new Area(a1);
634 inter.intersect(a2);
635
636 if (inter.isEmpty() || !checkIntersection(inter, eps)) {
637 return new Pair<>(PolygonIntersection.OUTSIDE, inter);
638 } else if (a2.getBounds2D().contains(a1.getBounds2D()) && inter.equals(a1)) {
639 return new Pair<>(PolygonIntersection.FIRST_INSIDE_SECOND, inter);
640 } else if (a1.getBounds2D().contains(a2.getBounds2D()) && inter.equals(a2)) {
641 return new Pair<>(PolygonIntersection.SECOND_INSIDE_FIRST, inter);
642 } else {
643 return new Pair<>(PolygonIntersection.CROSSING, inter);
644 }
645 }
646
647 /**
648 * Check an intersection area which might describe multiple small polygons.
649 * Return true if any of the polygons is bigger than the given threshold.
650 * @param inter the intersection area
651 * @param eps an area threshold, everything below is considered an empty intersection
652 * @return true if any of the polygons is bigger than the given threshold
653 */
654 private static boolean checkIntersection(Area inter, double eps) {
655 PathIterator pit = inter.getPathIterator(null);
656 double[] res = new double[6];
657 Rectangle2D r = new Rectangle2D.Double();
658 while (!pit.isDone()) {
659 int type = pit.currentSegment(res);
660 switch (type) {
661 case PathIterator.SEG_MOVETO:
662 r = new Rectangle2D.Double(res[0], res[1], 0, 0);
663 break;
664 case PathIterator.SEG_LINETO:
665 r.add(res[0], res[1]);
666 break;
667 case PathIterator.SEG_CLOSE:
668 if (r.getWidth() > eps || r.getHeight() > eps)
669 return true;
670 break;
671 default:
672 break;
673 }
674 pit.next();
675 }
676 return false;
677 }
678
679 /**
680 * Tests if point is inside a polygon. The polygon can be self-intersecting. In such case the contains function works in xor-like manner.
681 * @param polygonNodes list of nodes from polygon path.
682 * @param point the point to test
683 * @return true if the point is inside polygon.
684 */
685 public static boolean nodeInsidePolygon(INode point, List<? extends INode> polygonNodes) {
686 if (polygonNodes.size() < 2)
687 return false;
688
689 //iterate each side of the polygon, start with the last segment
690 INode oldPoint = polygonNodes.get(polygonNodes.size() - 1);
691
692 if (!oldPoint.isLatLonKnown()) {
693 return false;
694 }
695
696 boolean inside = false;
697 INode p1, p2;
698
699 for (INode newPoint : polygonNodes) {
700 //skip duplicate points
701 if (newPoint.equals(oldPoint)) {
702 continue;
703 }
704
705 if (!newPoint.isLatLonKnown()) {
706 return false;
707 }
708
709 //order points so p1.lat <= p2.lat
710 if (newPoint.getEastNorth().getY() > oldPoint.getEastNorth().getY()) {
711 p1 = oldPoint;
712 p2 = newPoint;
713 } else {
714 p1 = newPoint;
715 p2 = oldPoint;
716 }
717
718 EastNorth pEN = point.getEastNorth();
719 EastNorth opEN = oldPoint.getEastNorth();
720 EastNorth npEN = newPoint.getEastNorth();
721 EastNorth p1EN = p1.getEastNorth();
722 EastNorth p2EN = p2.getEastNorth();
723
724 if (pEN != null && opEN != null && npEN != null && p1EN != null && p2EN != null) {
725 //test if the line is crossed and if so invert the inside flag.
726 if ((npEN.getY() < pEN.getY()) == (pEN.getY() <= opEN.getY())
727 && (pEN.getX() - p1EN.getX()) * (p2EN.getY() - p1EN.getY())
728 < (p2EN.getX() - p1EN.getX()) * (pEN.getY() - p1EN.getY())) {
729 inside = !inside;
730 }
731 }
732
733 oldPoint = newPoint;
734 }
735
736 return inside;
737 }
738
739 /**
740 * Returns area of a closed way in square meters.
741 *
742 * @param way Way to measure, should be closed (first node is the same as last node)
743 * @return area of the closed way.
744 */
745 public static double closedWayArea(Way way) {
746 return getAreaAndPerimeter(way.getNodes(), Projections.getProjectionByCode("EPSG:54008")).getArea();
747 }
748
749 /**
750 * Returns area of a multipolygon in square meters.
751 *
752 * @param multipolygon the multipolygon to measure
753 * @return area of the multipolygon.
754 */
755 public static double multipolygonArea(Relation multipolygon) {
756 final Multipolygon mp = MultipolygonCache.getInstance().get(multipolygon);
757 return mp.getCombinedPolygons().stream()
758 .mapToDouble(pd -> pd.getAreaAndPerimeter(Projections.getProjectionByCode("EPSG:54008")).getArea())
759 .sum();
760 }
761
762 /**
763 * Computes the area of a closed way and multipolygon in square meters, or {@code null} for other primitives
764 *
765 * @param osm the primitive to measure
766 * @return area of the primitive, or {@code null}
767 * @since 13638 (signature)
768 */
769 public static Double computeArea(IPrimitive osm) {
770 if (osm instanceof Way && ((Way) osm).isClosed()) {
771 return closedWayArea((Way) osm);
772 } else if (osm instanceof Relation && ((Relation) osm).isMultipolygon() && !((Relation) osm).hasIncompleteMembers()) {
773 return multipolygonArea((Relation) osm);
774 } else {
775 return null;
776 }
777 }
778
779 /**
780 * Determines whether a way is oriented clockwise.
781 *
782 * Internals: Assuming a closed non-looping way, compute twice the area
783 * of the polygon using the formula {@code 2 * area = sum (X[n] * Y[n+1] - X[n+1] * Y[n])}.
784 * If the area is negative the way is ordered in a clockwise direction.
785 *
786 * See http://paulbourke.net/geometry/polyarea/
787 *
788 * @param w the way to be checked.
789 * @return true if and only if way is oriented clockwise.
790 * @throws IllegalArgumentException if way is not closed (see {@link Way#isClosed}).
791 */
792 public static boolean isClockwise(Way w) {
793 return isClockwise(w.getNodes());
794 }
795
796 /**
797 * Determines whether path from nodes list is oriented clockwise.
798 * @param nodes Nodes list to be checked.
799 * @return true if and only if way is oriented clockwise.
800 * @throws IllegalArgumentException if way is not closed (see {@link Way#isClosed}).
801 * @see #isClockwise(Way)
802 */
803 public static boolean isClockwise(List<? extends INode> nodes) {
804 int nodesCount = nodes.size();
805 if (nodesCount < 3 || nodes.get(0) != nodes.get(nodesCount - 1)) {
806 throw new IllegalArgumentException("Way must be closed to check orientation.");
807 }
808 double area2 = 0.;
809
810 for (int node = 1; node <= /*sic! consider last-first as well*/ nodesCount; node++) {
811 INode coorPrev = nodes.get(node - 1);
812 INode coorCurr = nodes.get(node % nodesCount);
813 area2 += coorPrev.lon() * coorCurr.lat();
814 area2 -= coorCurr.lon() * coorPrev.lat();
815 }
816 return area2 < 0;
817 }
818
819 /**
820 * Returns angle of a segment defined with 2 point coordinates.
821 *
822 * @param p1 first point
823 * @param p2 second point
824 * @return Angle in radians (-pi, pi]
825 */
826 public static double getSegmentAngle(EastNorth p1, EastNorth p2) {
827
828 CheckParameterUtil.ensureThat(p1.isValid(), () -> p1 + " invalid");
829 CheckParameterUtil.ensureThat(p2.isValid(), () -> p2 + " invalid");
830
831 return Math.atan2(p2.north() - p1.north(), p2.east() - p1.east());
832 }
833
834 /**
835 * Returns angle of a corner defined with 3 point coordinates.
836 *
837 * @param p1 first point
838 * @param common Common end point
839 * @param p3 third point
840 * @return Angle in radians (-pi, pi]
841 */
842 public static double getCornerAngle(EastNorth p1, EastNorth common, EastNorth p3) {
843
844 CheckParameterUtil.ensureThat(p1.isValid(), () -> p1 + " invalid");
845 CheckParameterUtil.ensureThat(common.isValid(), () -> common + " invalid");
846 CheckParameterUtil.ensureThat(p3.isValid(), () -> p3 + " invalid");
847
848 double result = getSegmentAngle(common, p1) - getSegmentAngle(common, p3);
849 if (result <= -Math.PI) {
850 result += 2 * Math.PI;
851 }
852
853 if (result > Math.PI) {
854 result -= 2 * Math.PI;
855 }
856
857 return result;
858 }
859
860 /**
861 * Get angles in radians and return it's value in range [0, 180].
862 *
863 * @param angle the angle in radians
864 * @return normalized angle in degrees
865 * @since 13670
866 */
867 public static double getNormalizedAngleInDegrees(double angle) {
868 return Math.abs(180 * angle / Math.PI);
869 }
870
871 /**
872 * Compute the centroid/barycenter of nodes
873 * @param nodes Nodes for which the centroid is wanted
874 * @return the centroid of nodes
875 * @see Geometry#getCenter
876 */
877 public static EastNorth getCentroid(List<? extends INode> nodes) {
878 return getCentroidEN(nodes.stream().map(INode::getEastNorth).collect(Collectors.toList()));
879 }
880
881 /**
882 * Compute the centroid/barycenter of nodes
883 * @param nodes Coordinates for which the centroid is wanted
884 * @return the centroid of nodes
885 * @since 13712
886 */
887 public static EastNorth getCentroidEN(List<EastNorth> nodes) {
888
889 final int size = nodes.size();
890 if (size == 1) {
891 return nodes.get(0);
892 } else if (size == 2) {
893 return nodes.get(0).getCenter(nodes.get(1));
894 }
895
896 BigDecimal area = BigDecimal.ZERO;
897 BigDecimal north = BigDecimal.ZERO;
898 BigDecimal east = BigDecimal.ZERO;
899
900 // See https://en.wikipedia.org/wiki/Centroid#Of_a_polygon for the equation used here
901 for (int i = 0; i < size; i++) {
902 EastNorth n0 = nodes.get(i);
903 EastNorth n1 = nodes.get((i+1) % size);
904
905 if (n0 != null && n1 != null && n0.isValid() && n1.isValid()) {
906 BigDecimal x0 = BigDecimal.valueOf(n0.east());
907 BigDecimal y0 = BigDecimal.valueOf(n0.north());
908 BigDecimal x1 = BigDecimal.valueOf(n1.east());
909 BigDecimal y1 = BigDecimal.valueOf(n1.north());
910
911 BigDecimal k = x0.multiply(y1, MathContext.DECIMAL128).subtract(y0.multiply(x1, MathContext.DECIMAL128));
912
913 area = area.add(k, MathContext.DECIMAL128);
914 east = east.add(k.multiply(x0.add(x1, MathContext.DECIMAL128), MathContext.DECIMAL128));
915 north = north.add(k.multiply(y0.add(y1, MathContext.DECIMAL128), MathContext.DECIMAL128));
916 }
917 }
918
919 BigDecimal d = new BigDecimal(3, MathContext.DECIMAL128); // 1/2 * 6 = 3
920 area = area.multiply(d, MathContext.DECIMAL128);
921 if (area.compareTo(BigDecimal.ZERO) != 0) {
922 north = north.divide(area, MathContext.DECIMAL128);
923 east = east.divide(area, MathContext.DECIMAL128);
924 }
925
926 return new EastNorth(east.doubleValue(), north.doubleValue());
927 }
928
929 /**
930 * Compute center of the circle closest to different nodes.
931 *
932 * Ensure exact center computation in case nodes are already aligned in circle.
933 * This is done by least square method.
934 * Let be a_i x + b_i y + c_i = 0 equations of bisectors of each edges.
935 * Center must be intersection of all bisectors.
936 * <pre>
937 * [ a1 b1 ] [ -c1 ]
938 * With A = [ ... ... ] and Y = [ ... ]
939 * [ an bn ] [ -cn ]
940 * </pre>
941 * An approximation of center of circle is (At.A)^-1.At.Y
942 * @param nodes Nodes parts of the circle (at least 3)
943 * @return An approximation of the center, of null if there is no solution.
944 * @see Geometry#getCentroid
945 * @since 6934
946 */
947 public static EastNorth getCenter(List<? extends INode> nodes) {
948 int nc = nodes.size();
949 if (nc < 3) return null;
950 /**
951 * Equation of each bisector ax + by + c = 0
952 */
953 double[] a = new double[nc];
954 double[] b = new double[nc];
955 double[] c = new double[nc];
956 // Compute equation of bisector
957 for (int i = 0; i < nc; i++) {
958 EastNorth pt1 = nodes.get(i).getEastNorth();
959 EastNorth pt2 = nodes.get((i+1) % nc).getEastNorth();
960 a[i] = pt1.east() - pt2.east();
961 b[i] = pt1.north() - pt2.north();
962 double d = Math.sqrt(a[i]*a[i] + b[i]*b[i]);
963 if (d == 0) return null;
964 a[i] /= d;
965 b[i] /= d;
966 double xC = (pt1.east() + pt2.east()) / 2;
967 double yC = (pt1.north() + pt2.north()) / 2;
968 c[i] = -(a[i]*xC + b[i]*yC);
969 }
970 // At.A = [aij]
971 double a11 = 0, a12 = 0, a22 = 0;
972 // At.Y = [bi]
973 double b1 = 0, b2 = 0;
974 for (int i = 0; i < nc; i++) {
975 a11 += a[i]*a[i];
976 a12 += a[i]*b[i];
977 a22 += b[i]*b[i];
978 b1 -= a[i]*c[i];
979 b2 -= b[i]*c[i];
980 }
981 // (At.A)^-1 = [invij]
982 double det = a11*a22 - a12*a12;
983 if (Math.abs(det) < 1e-5) return null;
984 double inv11 = a22/det;
985 double inv12 = -a12/det;
986 double inv22 = a11/det;
987 // center (xC, yC) = (At.A)^-1.At.y
988 double xC = inv11*b1 + inv12*b2;
989 double yC = inv12*b1 + inv22*b2;
990 return new EastNorth(xC, yC);
991 }
992
993 /**
994 * Tests if the {@code node} is inside the multipolygon {@code multiPolygon}. The nullable argument
995 * {@code isOuterWayAMatch} allows to decide if the immediate {@code outer} way of the multipolygon is a match.
996 * For repeated tests against {@code multiPolygon} better use {@link Geometry#filterInsideMultipolygon}.
997 * @param node node
998 * @param multiPolygon multipolygon
999 * @param isOuterWayAMatch allows to decide if the immediate {@code outer} way of the multipolygon is a match
1000 * @return {@code true} if the node is inside the multipolygon
1001 */
1002 public static boolean isNodeInsideMultiPolygon(INode node, Relation multiPolygon, Predicate<Way> isOuterWayAMatch) {
1003 return isPolygonInsideMultiPolygon(Collections.singletonList(node), multiPolygon, isOuterWayAMatch);
1004 }
1005
1006 /**
1007 * Tests if the polygon formed by {@code nodes} is inside the multipolygon {@code multiPolygon}. The nullable argument
1008 * {@code isOuterWayAMatch} allows to decide if the immediate {@code outer} way of the multipolygon is a match.
1009 * For repeated tests against {@code multiPolygon} better use {@link Geometry#filterInsideMultipolygon}.
1010 * <p>
1011 * If {@code nodes} contains exactly one element, then it is checked whether that one node is inside the multipolygon.
1012 * @param nodes nodes forming the polygon
1013 * @param multiPolygon multipolygon
1014 * @param isOuterWayAMatch allows to decide if the immediate {@code outer} way of the multipolygon is a match
1015 * @return {@code true} if the multipolygon is valid and the polygon formed by nodes is inside the multipolygon
1016 */
1017 public static boolean isPolygonInsideMultiPolygon(List<? extends INode> nodes, Relation multiPolygon, Predicate<Way> isOuterWayAMatch) {
1018 try {
1019 return isPolygonInsideMultiPolygon(nodes, MultipolygonBuilder.joinWays(multiPolygon), isOuterWayAMatch);
1020 } catch (MultipolygonBuilder.JoinedPolygonCreationException ex) {
1021 Logging.trace(ex);
1022 Logging.debug("Invalid multipolygon " + multiPolygon);
1023 return false;
1024 }
1025 }
1026
1027 /**
1028 * Tests if the polygon formed by {@code nodes} is inside the multipolygon {@code multiPolygon}. The nullable argument
1029 * {@code isOuterWayAMatch} allows to decide if the immediate {@code outer} way of the multipolygon is a match.
1030 * For repeated tests against {@code multiPolygon} better use {@link Geometry#filterInsideMultipolygon}.
1031 * <p>
1032 * If {@code nodes} contains exactly one element, then it is checked whether that one node is inside the multipolygon.
1033 * @param nodes nodes forming the polygon
1034 * @param outerInner result of {@link MultipolygonBuilder#joinWays(Relation)}
1035 * @param isOuterWayAMatch allows to decide if the immediate {@code outer} way of the multipolygon is a match
1036 * @return {@code true} if the multipolygon is valid and the polygon formed by nodes is inside the multipolygon
1037 * @since 15069
1038 */
1039 public static boolean isPolygonInsideMultiPolygon(List<? extends INode> nodes, Pair<List<JoinedPolygon>,
1040 List<JoinedPolygon>> outerInner, Predicate<Way> isOuterWayAMatch) {
1041 Area a1 = nodes.size() == 1 ? null : getArea(nodes);
1042 // Test if object is inside an outer member
1043 for (JoinedPolygon out : outerInner.a) {
1044 if (a1 == null
1045 ? nodeInsidePolygon(nodes.get(0), out.nodes)
1046 : PolygonIntersection.FIRST_INSIDE_SECOND == polygonIntersection(a1, out.area)) {
1047 // If inside an outer, check it is not inside an inner
1048 boolean insideInner = outerInner.b.stream().anyMatch(in -> a1 == null
1049 ? nodeInsidePolygon(nodes.get(0), in.nodes)
1050 : in.area.getBounds2D().contains(a1.getBounds2D())
1051 && polygonIntersection(a1, in.area) == PolygonIntersection.FIRST_INSIDE_SECOND
1052 && polygonIntersection(in.area, out.area) == PolygonIntersection.FIRST_INSIDE_SECOND);
1053 if (!insideInner) {
1054 // Final check using predicate
1055 if (isOuterWayAMatch == null || isOuterWayAMatch.test(out.ways.get(0)
1056 /* TODO give a better representation of the outer ring to the predicate */)) {
1057 return true;
1058 }
1059 }
1060 }
1061 }
1062 return false;
1063 }
1064
1065 /**
1066 * Find all primitives in the given collection which are inside the given polygon.
1067 *
1068 * @param primitives the primitives
1069 * @param polygon the closed way or multipolygon relation
1070 * @return a new list containing the found primitives, empty if polygon is invalid or nothing was found.
1071 * @see Geometry#filterInsidePolygon
1072 * @see Geometry#filterInsideMultipolygon
1073 * @since 15730
1074 */
1075 public static List<IPrimitive> filterInsideAnyPolygon(Collection<IPrimitive> primitives, IPrimitive polygon) {
1076 if (polygon instanceof IWay<?>) {
1077 return filterInsidePolygon(primitives, (IWay<?>) polygon);
1078 } else if (polygon instanceof Relation && polygon.isMultipolygon()) {
1079 return filterInsideMultipolygon(primitives, (Relation) polygon);
1080 }
1081 return Collections.emptyList();
1082 }
1083
1084 /**
1085 * Find all primitives in the given collection which are inside the given polygon.
1086 * Unclosed ways and multipolygon relations with unclosed outer rings are ignored.
1087 *
1088 * @param primitives the primitives
1089 * @param polygon the polygon
1090 * @return a new list containing the found primitives, empty if polygon is invalid or nothing was found.
1091 * @since 15069 (for {@link List} of {@code primitives}, 15730 for a {@link Collection} of {@code primitives})
1092 */
1093 public static List<IPrimitive> filterInsidePolygon(Collection<IPrimitive> primitives, IWay<?> polygon) {
1094 List<IPrimitive> res = new ArrayList<>();
1095 if (!polygon.isClosed() || polygon.getNodesCount() <= 3)
1096 return res;
1097 /** polygon area in east north space, calculated only when really needed */
1098 Area polygonArea = null;
1099 for (IPrimitive p : primitives) {
1100 if (p instanceof INode) {
1101 if (nodeInsidePolygon((INode) p, polygon.getNodes())) {
1102 res.add(p);
1103 }
1104 } else if (p instanceof IWay) {
1105 if (((IWay<?>) p).isClosed()) {
1106 if (polygonArea == null) {
1107 polygonArea = getArea(polygon.getNodes());
1108 }
1109 if (PolygonIntersection.FIRST_INSIDE_SECOND == polygonIntersection(getArea(((IWay<?>) p).getNodes()),
1110 polygonArea)) {
1111 res.add(p);
1112 }
1113 }
1114 } else if (p.isMultipolygon()) {
1115 if (polygonArea == null) {
1116 polygonArea = getArea(polygon.getNodes());
1117 }
1118 Multipolygon mp = new Multipolygon((Relation) p);
1119 boolean inside = true;
1120 // a (valid) multipolygon is inside the polygon if all outer rings are inside
1121 for (PolyData outer : mp.getOuterPolygons()) {
1122 if (!outer.isClosed()
1123 || PolygonIntersection.FIRST_INSIDE_SECOND != polygonIntersection(getArea(outer.getNodes()),
1124 polygonArea)) {
1125 inside = false;
1126 break;
1127 }
1128 }
1129 if (inside) {
1130 res.add(p);
1131 }
1132 }
1133 }
1134 return res;
1135 }
1136
1137 /**
1138 * Find all primitives in the given collection which are inside the given multipolygon. Members of the multipolygon are
1139 * ignored. Unclosed ways and multipolygon relations with unclosed outer rings are ignored.
1140 * @param primitives the primitives
1141 * @param multiPolygon the multipolygon relation
1142 * @return a new list containing the found primitives, empty if multipolygon is invalid or nothing was found.
1143 * @since 15069
1144 */
1145 public static List<IPrimitive> filterInsideMultipolygon(Collection<IPrimitive> primitives, Relation multiPolygon) {
1146 List<IPrimitive> res = new ArrayList<>();
1147 if (primitives.isEmpty())
1148 return res;
1149
1150 final Pair<List<JoinedPolygon>, List<JoinedPolygon>> outerInner;
1151 try {
1152 outerInner = MultipolygonBuilder.joinWays(multiPolygon);
1153 } catch (MultipolygonBuilder.JoinedPolygonCreationException ex) {
1154 Logging.trace(ex);
1155 Logging.debug("Invalid multipolygon " + multiPolygon);
1156 return res;
1157 }
1158
1159 Set<OsmPrimitive> members = multiPolygon.getMemberPrimitives();
1160 for (IPrimitive p : primitives) {
1161 if (members.contains(p))
1162 continue;
1163 if (p instanceof Node) {
1164 if (isPolygonInsideMultiPolygon(Collections.singletonList((Node) p), outerInner, null)) {
1165 res.add(p);
1166 }
1167 } else if (p instanceof Way) {
1168 if (((IWay<?>) p).isClosed() && isPolygonInsideMultiPolygon(((Way) p).getNodes(), outerInner, null)) {
1169 res.add(p);
1170 }
1171 } else if (p.isMultipolygon()) {
1172 Multipolygon mp = new Multipolygon((Relation) p);
1173 // a (valid) multipolygon is inside multiPolygon if all outer rings are inside
1174 boolean inside = mp.getOuterPolygons().stream()
1175 .allMatch(outer -> outer.isClosed() && isPolygonInsideMultiPolygon(outer.getNodes(), outerInner, null));
1176 if (inside) {
1177 res.add(p);
1178 }
1179 }
1180 }
1181 return res;
1182 }
1183
1184 /**
1185 * Data class to hold two double values (area and perimeter of a polygon).
1186 */
1187 public static class AreaAndPerimeter {
1188 private final double area;
1189 private final double perimeter;
1190
1191 /**
1192 * Create a new {@link AreaAndPerimeter}
1193 * @param area The area
1194 * @param perimeter The perimeter
1195 */
1196 public AreaAndPerimeter(double area, double perimeter) {
1197 this.area = area;
1198 this.perimeter = perimeter;
1199 }
1200
1201 /**
1202 * Gets the area
1203 * @return The area size
1204 */
1205 public double getArea() {
1206 return area;
1207 }
1208
1209 /**
1210 * Gets the perimeter
1211 * @return The perimeter length
1212 */
1213 public double getPerimeter() {
1214 return perimeter;
1215 }
1216 }
1217
1218 /**
1219 * Calculate area and perimeter length of a polygon.
1220 *
1221 * Uses current projection; units are that of the projected coordinates.
1222 *
1223 * @param nodes the list of nodes representing the polygon
1224 * @return area and perimeter
1225 */
1226 public static AreaAndPerimeter getAreaAndPerimeter(List<? extends ILatLon> nodes) {
1227 return getAreaAndPerimeter(nodes, null);
1228 }
1229
1230 /**
1231 * Calculate area and perimeter length of a polygon in the given projection.
1232 *
1233 * @param nodes the list of nodes representing the polygon
1234 * @param projection the projection to use for the calculation, {@code null} defaults to {@link ProjectionRegistry#getProjection()}
1235 * @return area and perimeter
1236 * @since 13638 (signature)
1237 */
1238 public static AreaAndPerimeter getAreaAndPerimeter(List<? extends ILatLon> nodes, Projection projection) {
1239 CheckParameterUtil.ensureParameterNotNull(nodes, "nodes");
1240 double area = 0;
1241 double perimeter = 0;
1242 Projection useProjection = projection == null ? ProjectionRegistry.getProjection() : projection;
1243
1244 if (!nodes.isEmpty()) {
1245 boolean closed = nodes.get(0) == nodes.get(nodes.size() - 1);
1246 int numSegments = closed ? nodes.size() - 1 : nodes.size();
1247 EastNorth p1 = nodes.get(0).getEastNorth(useProjection);
1248 for (int i = 1; i <= numSegments; i++) {
1249 final ILatLon node = nodes.get(i == numSegments ? 0 : i);
1250 final EastNorth p2 = node.getEastNorth(useProjection);
1251 if (p1 != null && p2 != null) {
1252 area += p1.east() * p2.north() - p2.east() * p1.north();
1253 perimeter += p1.distance(p2);
1254 }
1255 p1 = p2;
1256 }
1257 }
1258 return new AreaAndPerimeter(Math.abs(area) / 2, perimeter);
1259 }
1260
1261 /**
1262 * Get the closest primitive to {@code osm} from the collection of
1263 * OsmPrimitive {@code primitives}
1264 *
1265 * The {@code primitives} should be fully downloaded to ensure accuracy.
1266 *
1267 * Note: The complexity of this method is O(n*m), where n is the number of
1268 * children {@code osm} has plus 1, m is the number of children the
1269 * collection of primitives have plus the number of primitives in the
1270 * collection.
1271 *
1272 * @param <T> The return type of the primitive
1273 * @param osm The primitive to get the distances from
1274 * @param primitives The collection of primitives to get the distance to
1275 * @return The closest {@link OsmPrimitive}. This is not determinative.
1276 * To get all primitives that share the same distance, use
1277 * {@link Geometry#getClosestPrimitives}.
1278 * @since 15035
1279 */
1280 public static <T extends OsmPrimitive> T getClosestPrimitive(OsmPrimitive osm, Collection<T> primitives) {
1281 Collection<T> collection = getClosestPrimitives(osm, primitives);
1282 return collection.iterator().next();
1283 }
1284
1285 /**
1286 * Get the closest primitives to {@code osm} from the collection of
1287 * OsmPrimitive {@code primitives}
1288 *
1289 * The {@code primitives} should be fully downloaded to ensure accuracy.
1290 *
1291 * Note: The complexity of this method is O(n*m), where n is the number of
1292 * children {@code osm} has plus 1, m is the number of children the
1293 * collection of primitives have plus the number of primitives in the
1294 * collection.
1295 *
1296 * @param <T> The return type of the primitive
1297 * @param osm The primitive to get the distances from
1298 * @param primitives The collection of primitives to get the distance to
1299 * @return The closest {@link OsmPrimitive}s. May be empty.
1300 * @since 15035
1301 */
1302 public static <T extends OsmPrimitive> Collection<T> getClosestPrimitives(OsmPrimitive osm, Collection<T> primitives) {
1303 double lowestDistance = Double.MAX_VALUE;
1304 TreeSet<T> closest = new TreeSet<>();
1305 for (T primitive : primitives) {
1306 double distance = getDistance(osm, primitive);
1307 if (Double.isNaN(distance)) continue;
1308 int comp = Double.compare(distance, lowestDistance);
1309 if (comp < 0) {
1310 closest.clear();
1311 lowestDistance = distance;
1312 closest.add(primitive);
1313 } else if (comp == 0) {
1314 closest.add(primitive);
1315 }
1316 }
1317 return closest;
1318 }
1319
1320 /**
1321 * Get the furthest primitive to {@code osm} from the collection of
1322 * OsmPrimitive {@code primitives}
1323 *
1324 * The {@code primitives} should be fully downloaded to ensure accuracy.
1325 *
1326 * It does NOT give the furthest primitive based off of the furthest
1327 * part of that primitive
1328 *
1329 * Note: The complexity of this method is O(n*m), where n is the number of
1330 * children {@code osm} has plus 1, m is the number of children the
1331 * collection of primitives have plus the number of primitives in the
1332 * collection.
1333 *
1334 * @param <T> The return type of the primitive
1335 * @param osm The primitive to get the distances from
1336 * @param primitives The collection of primitives to get the distance to
1337 * @return The furthest {@link OsmPrimitive}. This is not determinative.
1338 * To get all primitives that share the same distance, use
1339 * {@link Geometry#getFurthestPrimitives}
1340 * @since 15035
1341 */
1342 public static <T extends OsmPrimitive> T getFurthestPrimitive(OsmPrimitive osm, Collection<T> primitives) {
1343 return getFurthestPrimitives(osm, primitives).iterator().next();
1344 }
1345
1346 /**
1347 * Get the furthest primitives to {@code osm} from the collection of
1348 * OsmPrimitive {@code primitives}
1349 *
1350 * The {@code primitives} should be fully downloaded to ensure accuracy.
1351 *
1352 * It does NOT give the furthest primitive based off of the furthest
1353 * part of that primitive
1354 *
1355 * Note: The complexity of this method is O(n*m), where n is the number of
1356 * children {@code osm} has plus 1, m is the number of children the
1357 * collection of primitives have plus the number of primitives in the
1358 * collection.
1359 *
1360 * @param <T> The return type of the primitive
1361 * @param osm The primitive to get the distances from
1362 * @param primitives The collection of primitives to get the distance to
1363 * @return The furthest {@link OsmPrimitive}s. It may return an empty collection.
1364 * @since 15035
1365 */
1366 public static <T extends OsmPrimitive> Collection<T> getFurthestPrimitives(OsmPrimitive osm, Collection<T> primitives) {
1367 double furthestDistance = Double.NEGATIVE_INFINITY;
1368 TreeSet<T> furthest = new TreeSet<>();
1369 for (T primitive : primitives) {
1370 double distance = getDistance(osm, primitive);
1371 if (Double.isNaN(distance)) continue;
1372 int comp = Double.compare(distance, furthestDistance);
1373 if (comp > 0) {
1374 furthest.clear();
1375 furthestDistance = distance;
1376 furthest.add(primitive);
1377 } else if (comp == 0) {
1378 furthest.add(primitive);
1379 }
1380 }
1381 return furthest;
1382 }
1383
1384 /**
1385 * Get the distance between different {@link OsmPrimitive}s
1386 * @param one The primitive to get the distance from
1387 * @param two The primitive to get the distance to
1388 * @return The distance between the primitives in meters
1389 * (or the unit of the current projection, see {@link Projection}).
1390 * May return {@link Double#NaN} if one of the primitives is incomplete.
1391 *
1392 * Note: The complexity is O(n*m), where (n,m) are the number of child
1393 * objects the {@link OsmPrimitive}s have.
1394 * @since 15035
1395 */
1396 public static double getDistance(OsmPrimitive one, OsmPrimitive two) {
1397 double rValue = Double.MAX_VALUE;
1398 if (one == null || two == null || one.isIncomplete()
1399 || two.isIncomplete()) return Double.NaN;
1400 if (one instanceof Node && two instanceof Node) {
1401 rValue = ((Node) one).getCoor().greatCircleDistance(((Node) two).getCoor());
1402 } else if (one instanceof Node && two instanceof Way) {
1403 rValue = getDistanceWayNode((Way) two, (Node) one);
1404 } else if (one instanceof Way && two instanceof Node) {
1405 rValue = getDistanceWayNode((Way) one, (Node) two);
1406 } else if (one instanceof Way && two instanceof Way) {
1407 rValue = getDistanceWayWay((Way) one, (Way) two);
1408 } else if (one instanceof Relation && !(two instanceof Relation)) {
1409 for (OsmPrimitive osmPrimitive: ((Relation) one).getMemberPrimitives()) {
1410 double currentDistance = getDistance(osmPrimitive, two);
1411 if (currentDistance < rValue) rValue = currentDistance;
1412 }
1413 } else if (!(one instanceof Relation) && two instanceof Relation) {
1414 rValue = getDistance(two, one);
1415 } else if (one instanceof Relation && two instanceof Relation) {
1416 for (OsmPrimitive osmPrimitive1 : ((Relation) one).getMemberPrimitives()) {
1417 for (OsmPrimitive osmPrimitive2 : ((Relation) two).getMemberPrimitives()) {
1418 double currentDistance = getDistance(osmPrimitive1, osmPrimitive2);
1419 if (currentDistance < rValue) rValue = currentDistance;
1420 }
1421 }
1422 }
1423 return rValue != Double.MAX_VALUE ? rValue : Double.NaN;
1424 }
1425
1426 /**
1427 * Get the distance between a way and a node
1428 * @param way The way to get the distance from
1429 * @param node The node to get the distance to
1430 * @return The distance between the {@code way} and the {@code node} in
1431 * meters (or the unit of the current projection, see {@link Projection}).
1432 * May return {@link Double#NaN} if the primitives are incomplete.
1433 * @since 15035
1434 */
1435 public static double getDistanceWayNode(Way way, Node node) {
1436 if (way == null || node == null || way.getNodesCount() < 2 || !node.isLatLonKnown())
1437 return Double.NaN;
1438
1439 double smallest = Double.MAX_VALUE;
1440 EastNorth en0 = node.getEastNorth();
1441 // go through the nodes as if they were paired
1442 Iterator<Node> iter = way.getNodes().iterator();
1443 EastNorth en1 = iter.next().getEastNorth();
1444 while (iter.hasNext()) {
1445 EastNorth en2 = iter.next().getEastNorth();
1446 double distance = getSegmentNodeDistSq(en1, en2, en0);
1447 if (distance < smallest)
1448 smallest = distance;
1449 en1 = en2;
1450 }
1451 return smallest != Double.MAX_VALUE ? Math.sqrt(smallest) : Double.NaN;
1452 }
1453
1454 /**
1455 * Get the closest {@link WaySegment} from a way to a primitive.
1456 * @param way The {@link Way} to get the distance from and the {@link WaySegment}
1457 * @param primitive The {@link OsmPrimitive} to get the distance to
1458 * @return The {@link WaySegment} that is closest to {@code primitive} from {@code way}.
1459 * If there are multiple {@link WaySegment}s with the same distance, the last
1460 * {@link WaySegment} with the same distance will be returned.
1461 * May return {@code null} if the way has fewer than two nodes or one
1462 * of the primitives is incomplete.
1463 * @since 15035
1464 */
1465 public static WaySegment getClosestWaySegment(Way way, OsmPrimitive primitive) {
1466 if (way == null || primitive == null || way.isIncomplete()
1467 || primitive.isIncomplete()) return null;
1468 double lowestDistance = Double.MAX_VALUE;
1469 Pair<Node, Node> closestNodes = null;
1470 for (Pair<Node, Node> nodes : way.getNodePairs(false)) {
1471 Way tWay = new Way();
1472 tWay.addNode(nodes.a);
1473 tWay.addNode(nodes.b);
1474 double distance = getDistance(tWay, primitive);
1475 if (distance < lowestDistance) {
1476 lowestDistance = distance;
1477 closestNodes = nodes;
1478 }
1479 }
1480 if (closestNodes == null) return null;
1481 return lowestDistance != Double.MAX_VALUE ? WaySegment.forNodePair(way, closestNodes.a, closestNodes.b) : null;
1482 }
1483
1484 /**
1485 * Get the distance between different ways. Iterates over the nodes of the ways, complexity is O(n*m)
1486 * (n,m giving the number of nodes)
1487 * @param w1 The first {@link Way}
1488 * @param w2 The second {@link Way}
1489 * @return The shortest distance between the ways in meters
1490 * (or the unit of the current projection, see {@link Projection}).
1491 * May return {@link Double#NaN}.
1492 * @since 15035
1493 */
1494 public static double getDistanceWayWay(Way w1, Way w2) {
1495 if (w1 == null || w2 == null || w1.getNodesCount() < 2 || w2.getNodesCount() < 2)
1496 return Double.NaN;
1497 double rValue = Double.MAX_VALUE;
1498 Iterator<Node> iter1 = w1.getNodes().iterator();
1499 Node w1N1 = iter1.next();
1500 while (iter1.hasNext()) {
1501 Node w1N2 = iter1.next();
1502 Iterator<Node> iter2 = w2.getNodes().iterator();
1503 Node w2N1 = iter2.next();
1504 while (iter2.hasNext()) {
1505 Node w2N2 = iter2.next();
1506 double distance = getDistanceSegmentSegment(w1N1, w1N2, w2N1, w2N2);
1507 if (distance < rValue)
1508 rValue = distance;
1509 w2N1 = w2N2;
1510 }
1511 w1N1 = w1N2;
1512 }
1513 return rValue != Double.MAX_VALUE ? rValue : Double.NaN;
1514 }
1515
1516 /**
1517 * Get the distance between different {@link WaySegment}s
1518 * @param ws1 A {@link WaySegment}
1519 * @param ws2 A {@link WaySegment}
1520 * @return The distance between the two {@link WaySegment}s in meters
1521 * (or the unit of the current projection, see {@link Projection}).
1522 * May return {@link Double#NaN}.
1523 * @since 15035
1524 */
1525 public static double getDistanceSegmentSegment(WaySegment ws1, WaySegment ws2) {
1526 return getDistanceSegmentSegment(ws1.getFirstNode(), ws1.getSecondNode(), ws2.getFirstNode(), ws2.getSecondNode());
1527 }
1528
1529 /**
1530 * Get the distance between different {@link WaySegment}s
1531 * @param ws1Node1 The first node of the first WaySegment
1532 * @param ws1Node2 The second node of the second WaySegment
1533 * @param ws2Node1 The first node of the second WaySegment
1534 * @param ws2Node2 The second node of the second WaySegment
1535 * @return The distance between the two {@link WaySegment}s in meters
1536 * (or the unit of the current projection, see {@link Projection}).
1537 * May return {@link Double#NaN}.
1538 * @since 15035
1539 */
1540 public static double getDistanceSegmentSegment(Node ws1Node1, Node ws1Node2, Node ws2Node1, Node ws2Node2) {
1541 EastNorth enWs1Node1 = ws1Node1.getEastNorth();
1542 EastNorth enWs1Node2 = ws1Node2.getEastNorth();
1543 EastNorth enWs2Node1 = ws2Node1.getEastNorth();
1544 EastNorth enWs2Node2 = ws2Node2.getEastNorth();
1545 if (enWs1Node1 == null || enWs1Node2 == null || enWs2Node1 == null || enWs2Node2 == null)
1546 return Double.NaN;
1547 if (getSegmentSegmentIntersection(enWs1Node1, enWs1Node2, enWs2Node1, enWs2Node2) != null)
1548 return 0;
1549
1550 double dist1sq = getSegmentNodeDistSq(enWs1Node1, enWs1Node2, enWs2Node1);
1551 double dist2sq = getSegmentNodeDistSq(enWs1Node1, enWs1Node2, enWs2Node2);
1552 double dist3sq = getSegmentNodeDistSq(enWs2Node1, enWs2Node2, enWs1Node1);
1553 double dist4sq = getSegmentNodeDistSq(enWs2Node1, enWs2Node2, enWs1Node2);
1554 double smallest = Math.min(Math.min(dist1sq, dist2sq), Math.min(dist3sq, dist4sq));
1555 return smallest != Double.MAX_VALUE ? Math.sqrt(smallest) : Double.NaN;
1556 }
1557
1558 /**
1559 * Calculate closest distance between a line segment s1-s2 and a point p
1560 * @param s1 start of segment
1561 * @param s2 end of segment
1562 * @param p the point
1563 * @return the square of the euclidean distance from p to the closest point on the segment
1564 */
1565 private static double getSegmentNodeDistSq(EastNorth s1, EastNorth s2, EastNorth p) {
1566 EastNorth c1 = closestPointTo(s1, s2, p, true);
1567 return c1.distanceSq(p);
1568 }
1569}
Note: See TracBrowser for help on using the repository browser.