source: josm/trunk/src/org/openstreetmap/josm/gui/NavigatableComponent.java@ 5390

Last change on this file since 5390 was 5311, checked in by Don-vip, 12 years ago

fix #7828 - added/fixed Javadoc / minor code simplification (patch by Locked)

  • Property svn:eol-style set to native
File size: 46.6 KB
Line 
1// License: GPL. See LICENSE file for details.
2package org.openstreetmap.josm.gui;
3
4import static org.openstreetmap.josm.tools.I18n.marktr;
5
6import java.awt.Cursor;
7import java.awt.Point;
8import java.awt.Rectangle;
9import java.awt.geom.AffineTransform;
10import java.awt.geom.Point2D;
11import java.util.ArrayList;
12import java.util.Collection;
13import java.util.Collections;
14import java.util.Date;
15import java.util.HashSet;
16import java.util.LinkedHashMap;
17import java.util.LinkedList;
18import java.util.List;
19import java.util.Locale;
20import java.util.Map;
21import java.util.Set;
22import java.util.Stack;
23import java.util.TreeMap;
24import java.util.concurrent.CopyOnWriteArrayList;
25
26import javax.swing.JComponent;
27
28import org.openstreetmap.josm.Main;
29import org.openstreetmap.josm.data.Bounds;
30import org.openstreetmap.josm.data.ProjectionBounds;
31import org.openstreetmap.josm.data.coor.CachedLatLon;
32import org.openstreetmap.josm.data.coor.EastNorth;
33import org.openstreetmap.josm.data.coor.LatLon;
34import org.openstreetmap.josm.data.osm.BBox;
35import org.openstreetmap.josm.data.osm.DataSet;
36import org.openstreetmap.josm.data.osm.Node;
37import org.openstreetmap.josm.data.osm.OsmPrimitive;
38import org.openstreetmap.josm.data.osm.Relation;
39import org.openstreetmap.josm.data.osm.Way;
40import org.openstreetmap.josm.data.osm.WaySegment;
41import org.openstreetmap.josm.data.preferences.IntegerProperty;
42import org.openstreetmap.josm.data.projection.Projection;
43import org.openstreetmap.josm.data.projection.Projections;
44import org.openstreetmap.josm.gui.help.Helpful;
45import org.openstreetmap.josm.gui.preferences.projection.ProjectionPreference;
46import org.openstreetmap.josm.tools.Predicate;
47
48/**
49 * An component that can be navigated by a mapmover. Used as map view and for the
50 * zoomer in the download dialog.
51 *
52 * @author imi
53 */
54public class NavigatableComponent extends JComponent implements Helpful {
55
56 /**
57 * Interface to notify listeners of the change of the zoom area.
58 */
59 public interface ZoomChangeListener {
60 void zoomChanged();
61 }
62
63 public static final IntegerProperty PROP_SNAP_DISTANCE = new IntegerProperty("mappaint.node.snap-distance", 10);
64
65 public static final String PROPNAME_CENTER = "center";
66 public static final String PROPNAME_SCALE = "scale";
67
68 /**
69 * the zoom listeners
70 */
71 private static final CopyOnWriteArrayList<ZoomChangeListener> zoomChangeListeners = new CopyOnWriteArrayList<ZoomChangeListener>();
72
73 /**
74 * Removes a zoom change listener
75 *
76 * @param listener the listener. Ignored if null or already absent
77 */
78 public static void removeZoomChangeListener(NavigatableComponent.ZoomChangeListener listener) {
79 zoomChangeListeners.remove(listener);
80 }
81
82 /**
83 * Adds a zoom change listener
84 *
85 * @param listener the listener. Ignored if null or already registered.
86 */
87 public static void addZoomChangeListener(NavigatableComponent.ZoomChangeListener listener) {
88 if (listener != null) {
89 zoomChangeListeners.addIfAbsent(listener);
90 }
91 }
92
93 protected static void fireZoomChanged() {
94 for (ZoomChangeListener l : zoomChangeListeners) {
95 l.zoomChanged();
96 }
97 }
98
99 /**
100 * The scale factor in x or y-units per pixel. This means, if scale = 10,
101 * every physical pixel on screen are 10 x or 10 y units in the
102 * northing/easting space of the projection.
103 */
104 private double scale = Main.getProjection().getDefaultZoomInPPD();
105 /**
106 * Center n/e coordinate of the desired screen center.
107 */
108 protected EastNorth center = calculateDefaultCenter();
109
110 public NavigatableComponent() {
111 setLayout(null);
112 }
113
114 protected DataSet getCurrentDataSet() {
115 return Main.main.getCurrentDataSet();
116 }
117
118 private EastNorth calculateDefaultCenter() {
119 Bounds b = Main.getProjection().getWorldBoundsLatLon();
120 double lat = (b.getMax().lat() + b.getMin().lat())/2;
121 double lon = (b.getMax().lon() + b.getMin().lon())/2;
122
123 return Main.getProjection().latlon2eastNorth(new LatLon(lat, lon));
124 }
125
126 public static String getDistText(double dist) {
127 return getSystemOfMeasurement().getDistText(dist);
128 }
129
130 public String getDist100PixelText()
131 {
132 return getDistText(getDist100Pixel());
133 }
134
135 public double getDist100Pixel()
136 {
137 int w = getWidth()/2;
138 int h = getHeight()/2;
139 LatLon ll1 = getLatLon(w-50,h);
140 LatLon ll2 = getLatLon(w+50,h);
141 return ll1.greatCircleDistance(ll2);
142 }
143
144 /**
145 * @return Returns the center point. A copy is returned, so users cannot
146 * change the center by accessing the return value. Use zoomTo instead.
147 */
148 public EastNorth getCenter() {
149 return center;
150 }
151
152 /**
153 * @param x X-Pixelposition to get coordinate from
154 * @param y Y-Pixelposition to get coordinate from
155 *
156 * @return Geographic coordinates from a specific pixel coordination
157 * on the screen.
158 */
159 public EastNorth getEastNorth(int x, int y) {
160 return new EastNorth(
161 center.east() + (x - getWidth()/2.0)*scale,
162 center.north() - (y - getHeight()/2.0)*scale);
163 }
164
165 public ProjectionBounds getProjectionBounds() {
166 return new ProjectionBounds(
167 new EastNorth(
168 center.east() - getWidth()/2.0*scale,
169 center.north() - getHeight()/2.0*scale),
170 new EastNorth(
171 center.east() + getWidth()/2.0*scale,
172 center.north() + getHeight()/2.0*scale));
173 }
174
175 /* FIXME: replace with better method - used by MapSlider */
176 public ProjectionBounds getMaxProjectionBounds() {
177 Bounds b = getProjection().getWorldBoundsLatLon();
178 return new ProjectionBounds(getProjection().latlon2eastNorth(b.getMin()),
179 getProjection().latlon2eastNorth(b.getMax()));
180 }
181
182 /* FIXME: replace with better method - used by Main to reset Bounds when projection changes, don't use otherwise */
183 public Bounds getRealBounds() {
184 return new Bounds(
185 getProjection().eastNorth2latlon(new EastNorth(
186 center.east() - getWidth()/2.0*scale,
187 center.north() - getHeight()/2.0*scale)),
188 getProjection().eastNorth2latlon(new EastNorth(
189 center.east() + getWidth()/2.0*scale,
190 center.north() + getHeight()/2.0*scale)));
191 }
192
193 /**
194 * @param x X-Pixelposition to get coordinate from
195 * @param y Y-Pixelposition to get coordinate from
196 *
197 * @return Geographic unprojected coordinates from a specific pixel coordination
198 * on the screen.
199 */
200 public LatLon getLatLon(int x, int y) {
201 return getProjection().eastNorth2latlon(getEastNorth(x, y));
202 }
203
204 public LatLon getLatLon(double x, double y) {
205 return getLatLon((int)x, (int)y);
206 }
207
208 /**
209 * @param r
210 * @return Minimum bounds that will cover rectangle
211 */
212 public Bounds getLatLonBounds(Rectangle r) {
213 // TODO Maybe this should be (optional) method of Projection implementation
214 EastNorth p1 = getEastNorth(r.x, r.y);
215 EastNorth p2 = getEastNorth(r.x + r.width, r.y + r.height);
216
217 Bounds result = new Bounds(Main.getProjection().eastNorth2latlon(p1));
218
219 double eastMin = Math.min(p1.east(), p2.east());
220 double eastMax = Math.max(p1.east(), p2.east());
221 double northMin = Math.min(p1.north(), p2.north());
222 double northMax = Math.max(p1.north(), p2.north());
223 double deltaEast = (eastMax - eastMin) / 10;
224 double deltaNorth = (northMax - northMin) / 10;
225
226 for (int i=0; i < 10; i++) {
227 result.extend(Main.getProjection().eastNorth2latlon(new EastNorth(eastMin + i * deltaEast, northMin)));
228 result.extend(Main.getProjection().eastNorth2latlon(new EastNorth(eastMin + i * deltaEast, northMax)));
229 result.extend(Main.getProjection().eastNorth2latlon(new EastNorth(eastMin, northMin + i * deltaNorth)));
230 result.extend(Main.getProjection().eastNorth2latlon(new EastNorth(eastMax, northMin + i * deltaNorth)));
231 }
232
233 return result;
234 }
235
236 public AffineTransform getAffineTransform() {
237 return new AffineTransform(
238 1.0/scale, 0.0, 0.0, -1.0/scale, getWidth()/2.0 - center.east()/scale, getHeight()/2.0 + center.north()/scale);
239 }
240
241 /**
242 * Return the point on the screen where this Coordinate would be.
243 * @param p The point, where this geopoint would be drawn.
244 * @return The point on screen where "point" would be drawn, relative
245 * to the own top/left.
246 */
247 public Point2D getPoint2D(EastNorth p) {
248 if (null == p)
249 return new Point();
250 double x = (p.east()-center.east())/scale + getWidth()/2;
251 double y = (center.north()-p.north())/scale + getHeight()/2;
252 return new Point2D.Double(x, y);
253 }
254
255 public Point2D getPoint2D(LatLon latlon) {
256 if (latlon == null)
257 return new Point();
258 else if (latlon instanceof CachedLatLon)
259 return getPoint2D(((CachedLatLon)latlon).getEastNorth());
260 else
261 return getPoint2D(getProjection().latlon2eastNorth(latlon));
262 }
263
264 public Point2D getPoint2D(Node n) {
265 return getPoint2D(n.getEastNorth());
266 }
267
268 // looses precision, may overflow (depends on p and current scale)
269 //@Deprecated
270 public Point getPoint(EastNorth p) {
271 Point2D d = getPoint2D(p);
272 return new Point((int) d.getX(), (int) d.getY());
273 }
274
275 // looses precision, may overflow (depends on p and current scale)
276 //@Deprecated
277 public Point getPoint(LatLon latlon) {
278 Point2D d = getPoint2D(latlon);
279 return new Point((int) d.getX(), (int) d.getY());
280 }
281
282 // looses precision, may overflow (depends on p and current scale)
283 //@Deprecated
284 public Point getPoint(Node n) {
285 Point2D d = getPoint2D(n);
286 return new Point((int) d.getX(), (int) d.getY());
287 }
288
289 /**
290 * Zoom to the given coordinate.
291 * @param newCenter The center x-value (easting) to zoom to.
292 * @param scale The scale to use.
293 */
294 public void zoomTo(EastNorth newCenter, double newScale) {
295 Bounds b = getProjection().getWorldBoundsLatLon();
296 LatLon cl = Projections.inverseProject(newCenter);
297 boolean changed = false;
298 double lat = cl.lat();
299 double lon = cl.lon();
300 if(lat < b.getMin().lat()) {changed = true; lat = b.getMin().lat(); }
301 else if(lat > b.getMax().lat()) {changed = true; lat = b.getMax().lat(); }
302 if(lon < b.getMin().lon()) {changed = true; lon = b.getMin().lon(); }
303 else if(lon > b.getMax().lon()) {changed = true; lon = b.getMax().lon(); }
304 if(changed) {
305 newCenter = Projections.project(new LatLon(lat,lon));
306 }
307 int width = getWidth()/2;
308 int height = getHeight()/2;
309 LatLon l1 = new LatLon(b.getMin().lat(), lon);
310 LatLon l2 = new LatLon(b.getMax().lat(), lon);
311 EastNorth e1 = getProjection().latlon2eastNorth(l1);
312 EastNorth e2 = getProjection().latlon2eastNorth(l2);
313 double d = e2.north() - e1.north();
314 if(d < height*newScale)
315 {
316 double newScaleH = d/height;
317 e1 = getProjection().latlon2eastNorth(new LatLon(lat, b.getMin().lon()));
318 e2 = getProjection().latlon2eastNorth(new LatLon(lat, b.getMax().lon()));
319 d = e2.east() - e1.east();
320 if(d < width*newScale) {
321 newScale = Math.max(newScaleH, d/width);
322 }
323 }
324 else
325 {
326 d = d/(l1.greatCircleDistance(l2)*height*10);
327 if(newScale < d) {
328 newScale = d;
329 }
330 }
331
332 if (!newCenter.equals(center) || (scale != newScale)) {
333 pushZoomUndo(center, scale);
334 zoomNoUndoTo(newCenter, newScale);
335 }
336 }
337
338 /**
339 * Zoom to the given coordinate without adding to the zoom undo buffer.
340 * @param newCenter The center x-value (easting) to zoom to.
341 * @param scale The scale to use.
342 */
343 private void zoomNoUndoTo(EastNorth newCenter, double newScale) {
344 if (!newCenter.equals(center)) {
345 EastNorth oldCenter = center;
346 center = newCenter;
347 firePropertyChange(PROPNAME_CENTER, oldCenter, newCenter);
348 }
349 if (scale != newScale) {
350 double oldScale = scale;
351 scale = newScale;
352 firePropertyChange(PROPNAME_SCALE, oldScale, newScale);
353 }
354
355 repaint();
356 fireZoomChanged();
357 }
358
359 public void zoomTo(EastNorth newCenter) {
360 zoomTo(newCenter, scale);
361 }
362
363 public void zoomTo(LatLon newCenter) {
364 zoomTo(Projections.project(newCenter));
365 }
366
367 public void smoothScrollTo(LatLon newCenter) {
368 smoothScrollTo(Projections.project(newCenter));
369 }
370
371 /**
372 * Create a thread that moves the viewport to the given center in an
373 * animated fashion.
374 */
375 public void smoothScrollTo(EastNorth newCenter) {
376 // fixme make these configurable.
377 final int fps = 20; // animation frames per second
378 final int speed = 1500; // milliseconds for full-screen-width pan
379 if (!newCenter.equals(center)) {
380 final EastNorth oldCenter = center;
381 final double distance = newCenter.distance(oldCenter) / scale;
382 final double milliseconds = distance / getWidth() * speed;
383 final double frames = milliseconds * fps / 1000;
384 final EastNorth finalNewCenter = newCenter;
385
386 new Thread(){
387 @Override
388 public void run() {
389 for (int i=0; i<frames; i++)
390 {
391 // fixme - not use zoom history here
392 zoomTo(oldCenter.interpolate(finalNewCenter, (i+1) / frames));
393 try { Thread.sleep(1000 / fps); } catch (InterruptedException ex) { };
394 }
395 }
396 }.start();
397 }
398 }
399
400 public void zoomToFactor(double x, double y, double factor) {
401 double newScale = scale*factor;
402 // New center position so that point under the mouse pointer stays the same place as it was before zooming
403 // You will get the formula by simplifying this expression: newCenter = oldCenter + mouseCoordinatesInNewZoom - mouseCoordinatesInOldZoom
404 zoomTo(new EastNorth(
405 center.east() - (x - getWidth()/2.0) * (newScale - scale),
406 center.north() + (y - getHeight()/2.0) * (newScale - scale)),
407 newScale);
408 }
409
410 public void zoomToFactor(EastNorth newCenter, double factor) {
411 zoomTo(newCenter, scale*factor);
412 }
413
414 public void zoomToFactor(double factor) {
415 zoomTo(center, scale*factor);
416 }
417
418 public void zoomTo(ProjectionBounds box) {
419 // -20 to leave some border
420 int w = getWidth()-20;
421 if (w < 20) {
422 w = 20;
423 }
424 int h = getHeight()-20;
425 if (h < 20) {
426 h = 20;
427 }
428
429 double scaleX = (box.maxEast-box.minEast)/w;
430 double scaleY = (box.maxNorth-box.minNorth)/h;
431 double newScale = Math.max(scaleX, scaleY);
432
433 zoomTo(box.getCenter(), newScale);
434 }
435
436 public void zoomTo(Bounds box) {
437 zoomTo(new ProjectionBounds(getProjection().latlon2eastNorth(box.getMin()),
438 getProjection().latlon2eastNorth(box.getMax())));
439 }
440
441 private class ZoomData {
442 LatLon center;
443 double scale;
444
445 public ZoomData(EastNorth center, double scale) {
446 this.center = Projections.inverseProject(center);
447 this.scale = scale;
448 }
449
450 public EastNorth getCenterEastNorth() {
451 return getProjection().latlon2eastNorth(center);
452 }
453
454 public double getScale() {
455 return scale;
456 }
457 }
458
459 private Stack<ZoomData> zoomUndoBuffer = new Stack<ZoomData>();
460 private Stack<ZoomData> zoomRedoBuffer = new Stack<ZoomData>();
461 private Date zoomTimestamp = new Date();
462
463 private void pushZoomUndo(EastNorth center, double scale) {
464 Date now = new Date();
465 if ((now.getTime() - zoomTimestamp.getTime()) > (Main.pref.getDouble("zoom.undo.delay", 1.0) * 1000)) {
466 zoomUndoBuffer.push(new ZoomData(center, scale));
467 if (zoomUndoBuffer.size() > Main.pref.getInteger("zoom.undo.max", 50)) {
468 zoomUndoBuffer.remove(0);
469 }
470 zoomRedoBuffer.clear();
471 }
472 zoomTimestamp = now;
473 }
474
475 public void zoomPrevious() {
476 if (!zoomUndoBuffer.isEmpty()) {
477 ZoomData zoom = zoomUndoBuffer.pop();
478 zoomRedoBuffer.push(new ZoomData(center, scale));
479 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale());
480 }
481 }
482
483 public void zoomNext() {
484 if (!zoomRedoBuffer.isEmpty()) {
485 ZoomData zoom = zoomRedoBuffer.pop();
486 zoomUndoBuffer.push(new ZoomData(center, scale));
487 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale());
488 }
489 }
490
491 public boolean hasZoomUndoEntries() {
492 return !zoomUndoBuffer.isEmpty();
493 }
494
495 public boolean hasZoomRedoEntries() {
496 return !zoomRedoBuffer.isEmpty();
497 }
498
499 private BBox getBBox(Point p, int snapDistance) {
500 return new BBox(getLatLon(p.x - snapDistance, p.y - snapDistance),
501 getLatLon(p.x + snapDistance, p.y + snapDistance));
502 }
503
504 /**
505 * The *result* does not depend on the current map selection state,
506 * neither does the result *order*.
507 * It solely depends on the distance to point p.
508 *
509 * @return a sorted map with the keys representing the distance of
510 * their associated nodes to point p.
511 */
512 private Map<Double, List<Node>> getNearestNodesImpl(Point p,
513 Predicate<OsmPrimitive> predicate) {
514 TreeMap<Double, List<Node>> nearestMap = new TreeMap<Double, List<Node>>();
515 DataSet ds = getCurrentDataSet();
516
517 if (ds != null) {
518 double dist, snapDistanceSq = PROP_SNAP_DISTANCE.get();
519 snapDistanceSq *= snapDistanceSq;
520
521 for (Node n : ds.searchNodes(getBBox(p, PROP_SNAP_DISTANCE.get()))) {
522 if (predicate.evaluate(n)
523 && (dist = getPoint2D(n).distanceSq(p)) < snapDistanceSq)
524 {
525 List<Node> nlist;
526 if (nearestMap.containsKey(dist)) {
527 nlist = nearestMap.get(dist);
528 } else {
529 nlist = new LinkedList<Node>();
530 nearestMap.put(dist, nlist);
531 }
532 nlist.add(n);
533 }
534 }
535 }
536
537 return nearestMap;
538 }
539
540 /**
541 * The *result* does not depend on the current map selection state,
542 * neither does the result *order*.
543 * It solely depends on the distance to point p.
544 *
545 * @return All nodes nearest to point p that are in a belt from
546 * dist(nearest) to dist(nearest)+4px around p and
547 * that are not in ignore.
548 *
549 * @param p the point for which to search the nearest segment.
550 * @param ignore a collection of nodes which are not to be returned.
551 * @param predicate the returned objects have to fulfill certain properties.
552 */
553 public final List<Node> getNearestNodes(Point p,
554 Collection<Node> ignore, Predicate<OsmPrimitive> predicate) {
555 List<Node> nearestList = Collections.emptyList();
556
557 if (ignore == null) {
558 ignore = Collections.emptySet();
559 }
560
561 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate);
562 if (!nlists.isEmpty()) {
563 Double minDistSq = null;
564 List<Node> nlist;
565 for (Double distSq : nlists.keySet()) {
566 nlist = nlists.get(distSq);
567
568 // filter nodes to be ignored before determining minDistSq..
569 nlist.removeAll(ignore);
570 if (minDistSq == null) {
571 if (!nlist.isEmpty()) {
572 minDistSq = distSq;
573 nearestList = new ArrayList<Node>();
574 nearestList.addAll(nlist);
575 }
576 } else {
577 if (distSq-minDistSq < (4)*(4)) {
578 nearestList.addAll(nlist);
579 }
580 }
581 }
582 }
583
584 return nearestList;
585 }
586
587 /**
588 * The *result* does not depend on the current map selection state,
589 * neither does the result *order*.
590 * It solely depends on the distance to point p.
591 *
592 * @return All nodes nearest to point p that are in a belt from
593 * dist(nearest) to dist(nearest)+4px around p.
594 * @see #getNearestNodes(Point, Collection, Predicate)
595 *
596 * @param p the point for which to search the nearest segment.
597 * @param predicate the returned objects have to fulfill certain properties.
598 */
599 public final List<Node> getNearestNodes(Point p, Predicate<OsmPrimitive> predicate) {
600 return getNearestNodes(p, null, predicate);
601 }
602
603 /**
604 * The *result* depends on the current map selection state IF use_selected is true.
605 *
606 * If more than one node within node.snap-distance pixels is found,
607 * the nearest node selected is returned IF use_selected is true.
608 *
609 * Else the nearest new/id=0 node within about the same distance
610 * as the true nearest node is returned.
611 *
612 * If no such node is found either, the true nearest
613 * node to p is returned.
614 *
615 * Finally, if a node is not found at all, null is returned.
616 *
617 * @return A node within snap-distance to point p,
618 * that is chosen by the algorithm described.
619 *
620 * @param p the screen point
621 * @param predicate this parameter imposes a condition on the returned object, e.g.
622 * give the nearest node that is tagged.
623 */
624 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, boolean use_selected) {
625 Node n = null;
626
627 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate);
628 if (!nlists.isEmpty()) {
629 Node ntsel = null, ntnew = null;
630 double minDistSq = nlists.keySet().iterator().next();
631
632 for (Double distSq : nlists.keySet()) {
633 for (Node nd : nlists.get(distSq)) {
634 // find the nearest selected node
635 if (ntsel == null && nd.isSelected()) {
636 ntsel = nd;
637 // if there are multiple nearest nodes, prefer the one
638 // that is selected. This is required in order to drag
639 // the selected node if multiple nodes have the same
640 // coordinates (e.g. after unglue)
641 use_selected |= (distSq == minDistSq);
642 }
643 // find the nearest newest node that is within about the same
644 // distance as the true nearest node
645 if (ntnew == null && nd.isNew() && (distSq-minDistSq < 1)) {
646 ntnew = nd;
647 }
648 }
649 }
650
651 // take nearest selected, nearest new or true nearest node to p, in that order
652 n = (ntsel != null && use_selected) ? ntsel
653 : (ntnew != null) ? ntnew
654 : nlists.values().iterator().next().get(0);
655 }
656 return n;
657 }
658
659 /**
660 * Convenience method to {@link #getNearestNode(Point, Predicate, boolean)}.
661 *
662 * @return The nearest node to point p.
663 */
664 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate) {
665 return getNearestNode(p, predicate, true);
666 }
667
668 /**
669 * The *result* does not depend on the current map selection state,
670 * neither does the result *order*.
671 * It solely depends on the distance to point p.
672 *
673 * @return a sorted map with the keys representing the perpendicular
674 * distance of their associated way segments to point p.
675 */
676 private Map<Double, List<WaySegment>> getNearestWaySegmentsImpl(Point p,
677 Predicate<OsmPrimitive> predicate) {
678 Map<Double, List<WaySegment>> nearestMap = new TreeMap<Double, List<WaySegment>>();
679 DataSet ds = getCurrentDataSet();
680
681 if (ds != null) {
682 double snapDistanceSq = Main.pref.getInteger("mappaint.segment.snap-distance", 10);
683 snapDistanceSq *= snapDistanceSq;
684
685 for (Way w : ds.searchWays(getBBox(p, Main.pref.getInteger("mappaint.segment.snap-distance", 10)))) {
686 if (!predicate.evaluate(w)) {
687 continue;
688 }
689 Node lastN = null;
690 int i = -2;
691 for (Node n : w.getNodes()) {
692 i++;
693 if (n.isDeleted() || n.isIncomplete()) { //FIXME: This shouldn't happen, raise exception?
694 continue;
695 }
696 if (lastN == null) {
697 lastN = n;
698 continue;
699 }
700
701 Point2D A = getPoint2D(lastN);
702 Point2D B = getPoint2D(n);
703 double c = A.distanceSq(B);
704 double a = p.distanceSq(B);
705 double b = p.distanceSq(A);
706
707 /* perpendicular distance squared
708 * loose some precision to account for possible deviations in the calculation above
709 * e.g. if identical (A and B) come about reversed in another way, values may differ
710 * -- zero out least significant 32 dual digits of mantissa..
711 */
712 double perDistSq = Double.longBitsToDouble(
713 Double.doubleToLongBits( a - (a - b + c) * (a - b + c) / 4 / c )
714 >> 32 << 32); // resolution in numbers with large exponent not needed here..
715
716 if (perDistSq < snapDistanceSq && a < c + snapDistanceSq && b < c + snapDistanceSq) {
717 //System.err.println(Double.toHexString(perDistSq));
718
719 List<WaySegment> wslist;
720 if (nearestMap.containsKey(perDistSq)) {
721 wslist = nearestMap.get(perDistSq);
722 } else {
723 wslist = new LinkedList<WaySegment>();
724 nearestMap.put(perDistSq, wslist);
725 }
726 wslist.add(new WaySegment(w, i));
727 }
728
729 lastN = n;
730 }
731 }
732 }
733
734 return nearestMap;
735 }
736
737 /**
738 * The result *order* depends on the current map selection state.
739 * Segments within 10px of p are searched and sorted by their distance to @param p,
740 * then, within groups of equally distant segments, prefer those that are selected.
741 *
742 * @return all segments within 10px of p that are not in ignore,
743 * sorted by their perpendicular distance.
744 *
745 * @param p the point for which to search the nearest segments.
746 * @param ignore a collection of segments which are not to be returned.
747 * @param predicate the returned objects have to fulfill certain properties.
748 */
749 public final List<WaySegment> getNearestWaySegments(Point p,
750 Collection<WaySegment> ignore, Predicate<OsmPrimitive> predicate) {
751 List<WaySegment> nearestList = new ArrayList<WaySegment>();
752 List<WaySegment> unselected = new LinkedList<WaySegment>();
753
754 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) {
755 // put selected waysegs within each distance group first
756 // makes the order of nearestList dependent on current selection state
757 for (WaySegment ws : wss) {
758 (ws.way.isSelected() ? nearestList : unselected).add(ws);
759 }
760 nearestList.addAll(unselected);
761 unselected.clear();
762 }
763 if (ignore != null) {
764 nearestList.removeAll(ignore);
765 }
766
767 return nearestList;
768 }
769
770 /**
771 * The result *order* depends on the current map selection state.
772 *
773 * @return all segments within 10px of p, sorted by their perpendicular distance.
774 * @see #getNearestWaySegments(Point, Collection, Predicate)
775 *
776 * @param p the point for which to search the nearest segments.
777 * @param predicate the returned objects have to fulfill certain properties.
778 */
779 public final List<WaySegment> getNearestWaySegments(Point p, Predicate<OsmPrimitive> predicate) {
780 return getNearestWaySegments(p, null, predicate);
781 }
782
783 /**
784 * The *result* depends on the current map selection state IF use_selected is true.
785 *
786 * @return The nearest way segment to point p,
787 * and, depending on use_selected, prefers a selected way segment, if found.
788 * @see #getNearestWaySegments(Point, Collection, Predicate)
789 *
790 * @param p the point for which to search the nearest segment.
791 * @param predicate the returned object has to fulfill certain properties.
792 * @param use_selected whether selected way segments should be preferred.
793 */
794 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, boolean use_selected) {
795 WaySegment wayseg = null, ntsel = null;
796
797 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) {
798 if (wayseg != null && ntsel != null) {
799 break;
800 }
801 for (WaySegment ws : wslist) {
802 if (wayseg == null) {
803 wayseg = ws;
804 }
805 if (ntsel == null && ws.way.isSelected()) {
806 ntsel = ws;
807 }
808 }
809 }
810
811 return (ntsel != null && use_selected) ? ntsel : wayseg;
812 }
813
814 /**
815 * Convenience method to {@link #getNearestWaySegment(Point, Predicate, boolean)}.
816 *
817 * @return The nearest way segment to point p.
818 */
819 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate) {
820 return getNearestWaySegment(p, predicate, true);
821 }
822
823 /**
824 * The *result* does not depend on the current map selection state,
825 * neither does the result *order*.
826 * It solely depends on the perpendicular distance to point p.
827 *
828 * @return all nearest ways to the screen point given that are not in ignore.
829 * @see #getNearestWaySegments(Point, Collection, Predicate)
830 *
831 * @param p the point for which to search the nearest ways.
832 * @param ignore a collection of ways which are not to be returned.
833 * @param predicate the returned object has to fulfill certain properties.
834 */
835 public final List<Way> getNearestWays(Point p,
836 Collection<Way> ignore, Predicate<OsmPrimitive> predicate) {
837 List<Way> nearestList = new ArrayList<Way>();
838 Set<Way> wset = new HashSet<Way>();
839
840 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) {
841 for (WaySegment ws : wss) {
842 if (wset.add(ws.way)) {
843 nearestList.add(ws.way);
844 }
845 }
846 }
847 if (ignore != null) {
848 nearestList.removeAll(ignore);
849 }
850
851 return nearestList;
852 }
853
854 /**
855 * The *result* does not depend on the current map selection state,
856 * neither does the result *order*.
857 * It solely depends on the perpendicular distance to point p.
858 *
859 * @return all nearest ways to the screen point given.
860 * @see #getNearestWays(Point, Collection, Predicate)
861 *
862 * @param p the point for which to search the nearest ways.
863 * @param predicate the returned object has to fulfill certain properties.
864 */
865 public final List<Way> getNearestWays(Point p, Predicate<OsmPrimitive> predicate) {
866 return getNearestWays(p, null, predicate);
867 }
868
869 /**
870 * The *result* depends on the current map selection state.
871 *
872 * @return The nearest way to point p,
873 * prefer a selected way if there are multiple nearest.
874 * @see #getNearestWaySegment(Point, Collection, Predicate)
875 *
876 * @param p the point for which to search the nearest segment.
877 * @param predicate the returned object has to fulfill certain properties.
878 */
879 public final Way getNearestWay(Point p, Predicate<OsmPrimitive> predicate) {
880 WaySegment nearestWaySeg = getNearestWaySegment(p, predicate);
881 return (nearestWaySeg == null) ? null : nearestWaySeg.way;
882 }
883
884 /**
885 * The *result* does not depend on the current map selection state,
886 * neither does the result *order*.
887 * It solely depends on the distance to point p.
888 *
889 * First, nodes will be searched. If there are nodes within BBox found,
890 * return a collection of those nodes only.
891 *
892 * If no nodes are found, search for nearest ways. If there are ways
893 * within BBox found, return a collection of those ways only.
894 *
895 * If nothing is found, return an empty collection.
896 *
897 * @return Primitives nearest to the given screen point that are not in ignore.
898 * @see #getNearestNodes(Point, Collection, Predicate)
899 * @see #getNearestWays(Point, Collection, Predicate)
900 *
901 * @param p The point on screen.
902 * @param ignore a collection of ways which are not to be returned.
903 * @param predicate the returned object has to fulfill certain properties.
904 */
905 public final List<OsmPrimitive> getNearestNodesOrWays(Point p,
906 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) {
907 List<OsmPrimitive> nearestList = Collections.emptyList();
908 OsmPrimitive osm = getNearestNodeOrWay(p, predicate, false);
909
910 if (osm != null) {
911 if (osm instanceof Node) {
912 nearestList = new ArrayList<OsmPrimitive>(getNearestNodes(p, predicate));
913 } else if (osm instanceof Way) {
914 nearestList = new ArrayList<OsmPrimitive>(getNearestWays(p, predicate));
915 }
916 if (ignore != null) {
917 nearestList.removeAll(ignore);
918 }
919 }
920
921 return nearestList;
922 }
923
924 /**
925 * The *result* does not depend on the current map selection state,
926 * neither does the result *order*.
927 * It solely depends on the distance to point p.
928 *
929 * @return Primitives nearest to the given screen point.
930 * @see #getNearests(Point, Collection, Predicate)
931 *
932 * @param p The point on screen.
933 * @param predicate the returned object has to fulfill certain properties.
934 */
935 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, Predicate<OsmPrimitive> predicate) {
936 return getNearestNodesOrWays(p, null, predicate);
937 }
938
939 /**
940 * This is used as a helper routine to {@link #getNearestNodeOrWay(Point, Predicate, boolean)}
941 * It decides, whether to yield the node to be tested or look for further (way) candidates.
942 *
943 * @return true, if the node fulfills the properties of the function body
944 *
945 * @param osm node to check
946 * @param p point clicked
947 * @param use_selected whether to prefer selected nodes
948 */
949 private boolean isPrecedenceNode(Node osm, Point p, boolean use_selected) {
950 boolean ret = false;
951
952 if (osm != null) {
953 ret |= !(p.distanceSq(getPoint2D(osm)) > (4)*(4));
954 ret |= osm.isTagged();
955 if (use_selected) {
956 ret |= osm.isSelected();
957 }
958 }
959
960 return ret;
961 }
962
963 /**
964 * The *result* depends on the current map selection state IF use_selected is true.
965 *
966 * IF use_selected is true, use {@link #getNearestNode(Point, Predicate)} to find
967 * the nearest, selected node. If not found, try {@link #getNearestWaySegment(Point, Predicate)}
968 * to find the nearest selected way.
969 *
970 * IF use_selected is false, or if no selected primitive was found, do the following.
971 *
972 * If the nearest node found is within 4px of p, simply take it.
973 * Else, find the nearest way segment. Then, if p is closer to its
974 * middle than to the node, take the way segment, else take the node.
975 *
976 * Finally, if no nearest primitive is found at all, return null.
977 *
978 * @return A primitive within snap-distance to point p,
979 * that is chosen by the algorithm described.
980 * @see getNearestNode(Point, Predicate)
981 * @see getNearestNodesImpl(Point, Predicate)
982 * @see getNearestWay(Point, Predicate)
983 *
984 * @param p The point on screen.
985 * @param predicate the returned object has to fulfill certain properties.
986 * @param use_selected whether to prefer primitives that are currently selected.
987 */
988 public final OsmPrimitive getNearestNodeOrWay(Point p, Predicate<OsmPrimitive> predicate, boolean use_selected) {
989 OsmPrimitive osm = getNearestNode(p, predicate, use_selected);
990 WaySegment ws = null;
991
992 if (!isPrecedenceNode((Node)osm, p, use_selected)) {
993 ws = getNearestWaySegment(p, predicate, use_selected);
994
995 if (ws != null) {
996 if ((ws.way.isSelected() && use_selected) || osm == null) {
997 // either (no _selected_ nearest node found, if desired) or no nearest node was found
998 osm = ws.way;
999 } else {
1000 int maxWaySegLenSq = 3*PROP_SNAP_DISTANCE.get();
1001 maxWaySegLenSq *= maxWaySegLenSq;
1002
1003 Point2D wp1 = getPoint2D(ws.way.getNode(ws.lowerIndex));
1004 Point2D wp2 = getPoint2D(ws.way.getNode(ws.lowerIndex+1));
1005
1006 // is wayseg shorter than maxWaySegLenSq and
1007 // is p closer to the middle of wayseg than to the nearest node?
1008 if (wp1.distanceSq(wp2) < maxWaySegLenSq &&
1009 p.distanceSq(project(0.5, wp1, wp2)) < p.distanceSq(getPoint2D((Node)osm))) {
1010 osm = ws.way;
1011 }
1012 }
1013 }
1014 }
1015
1016 return osm;
1017 }
1018
1019 /**
1020 * @return o as collection of o's type.
1021 */
1022 public static <T> Collection<T> asColl(T o) {
1023 if (o == null)
1024 return Collections.emptySet();
1025 return Collections.singleton(o);
1026 }
1027
1028 public static double perDist(Point2D pt, Point2D a, Point2D b) {
1029 if (pt != null && a != null && b != null) {
1030 double pd = (
1031 (a.getX()-pt.getX())*(b.getX()-a.getX()) -
1032 (a.getY()-pt.getY())*(b.getY()-a.getY()) );
1033 return Math.abs(pd) / a.distance(b);
1034 }
1035 return 0d;
1036 }
1037
1038 /**
1039 *
1040 * @param pt point to project onto (ab)
1041 * @param a root of vector
1042 * @param b vector
1043 * @return point of intersection of line given by (ab)
1044 * with its orthogonal line running through pt
1045 */
1046 public static Point2D project(Point2D pt, Point2D a, Point2D b) {
1047 if (pt != null && a != null && b != null) {
1048 double r = ((
1049 (pt.getX()-a.getX())*(b.getX()-a.getX()) +
1050 (pt.getY()-a.getY())*(b.getY()-a.getY()) )
1051 / a.distanceSq(b));
1052 return project(r, a, b);
1053 }
1054 return null;
1055 }
1056
1057 /**
1058 * if r = 0 returns a, if r=1 returns b,
1059 * if r = 0.5 returns center between a and b, etc..
1060 *
1061 * @param r scale value
1062 * @param a root of vector
1063 * @param b vector
1064 * @return new point at a + r*(ab)
1065 */
1066 public static Point2D project(double r, Point2D a, Point2D b) {
1067 Point2D ret = null;
1068
1069 if (a != null && b != null) {
1070 ret = new Point2D.Double(a.getX() + r*(b.getX()-a.getX()),
1071 a.getY() + r*(b.getY()-a.getY()));
1072 }
1073 return ret;
1074 }
1075
1076 /**
1077 * The *result* does not depend on the current map selection state,
1078 * neither does the result *order*.
1079 * It solely depends on the distance to point p.
1080 *
1081 * @return a list of all objects that are nearest to point p and
1082 * not in ignore or an empty list if nothing was found.
1083 *
1084 * @param p The point on screen.
1085 * @param ignore a collection of ways which are not to be returned.
1086 * @param predicate the returned object has to fulfill certain properties.
1087 */
1088 public final List<OsmPrimitive> getAllNearest(Point p,
1089 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) {
1090 List<OsmPrimitive> nearestList = new ArrayList<OsmPrimitive>();
1091 Set<Way> wset = new HashSet<Way>();
1092
1093 // add nearby ways
1094 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) {
1095 for (WaySegment ws : wss) {
1096 if (wset.add(ws.way)) {
1097 nearestList.add(ws.way);
1098 }
1099 }
1100 }
1101
1102 // add nearby nodes
1103 for (List<Node> nlist : getNearestNodesImpl(p, predicate).values()) {
1104 nearestList.addAll(nlist);
1105 }
1106
1107 // add parent relations of nearby nodes and ways
1108 Set<OsmPrimitive> parentRelations = new HashSet<OsmPrimitive>();
1109 for (OsmPrimitive o : nearestList) {
1110 for (OsmPrimitive r : o.getReferrers()) {
1111 if (r instanceof Relation && predicate.evaluate(r)) {
1112 parentRelations.add(r);
1113 }
1114 }
1115 }
1116 nearestList.addAll(parentRelations);
1117
1118 if (ignore != null) {
1119 nearestList.removeAll(ignore);
1120 }
1121
1122 return nearestList;
1123 }
1124
1125 /**
1126 * The *result* does not depend on the current map selection state,
1127 * neither does the result *order*.
1128 * It solely depends on the distance to point p.
1129 *
1130 * @return a list of all objects that are nearest to point p
1131 * or an empty list if nothing was found.
1132 * @see #getAllNearest(Point, Collection, Predicate)
1133 *
1134 * @param p The point on screen.
1135 * @param predicate the returned object has to fulfill certain properties.
1136 */
1137 public final List<OsmPrimitive> getAllNearest(Point p, Predicate<OsmPrimitive> predicate) {
1138 return getAllNearest(p, null, predicate);
1139 }
1140
1141 /**
1142 * @return The projection to be used in calculating stuff.
1143 */
1144 public Projection getProjection() {
1145 return Main.getProjection();
1146 }
1147
1148 public String helpTopic() {
1149 String n = getClass().getName();
1150 return n.substring(n.lastIndexOf('.')+1);
1151 }
1152
1153 /**
1154 * Return a ID which is unique as long as viewport dimensions are the same
1155 */
1156 public int getViewID() {
1157 String x = center.east() + "_" + center.north() + "_" + scale + "_" +
1158 getWidth() + "_" + getHeight() + "_" + getProjection().toString();
1159 java.util.zip.CRC32 id = new java.util.zip.CRC32();
1160 id.update(x.getBytes());
1161 return (int)id.getValue();
1162 }
1163
1164 public static SystemOfMeasurement getSystemOfMeasurement() {
1165 SystemOfMeasurement som = SYSTEMS_OF_MEASUREMENT.get(ProjectionPreference.PROP_SYSTEM_OF_MEASUREMENT.get());
1166 if (som == null)
1167 return METRIC_SOM;
1168 return som;
1169 }
1170
1171 public static class SystemOfMeasurement {
1172 public final double aValue;
1173 public final double bValue;
1174 public final String aName;
1175 public final String bName;
1176
1177 /**
1178 * System of measurement. Currently covers only length units.
1179 *
1180 * If a quantity x is given in m (x_m) and in unit a (x_a) then it translates as
1181 * x_a == x_m / aValue
1182 */
1183 public SystemOfMeasurement(double aValue, String aName, double bValue, String bName) {
1184 this.aValue = aValue;
1185 this.aName = aName;
1186 this.bValue = bValue;
1187 this.bName = bName;
1188 }
1189
1190 public String getDistText(double dist) {
1191 double a = dist / aValue;
1192 if (!Main.pref.getBoolean("system_of_measurement.use_only_lower_unit", false) && a > bValue / aValue) {
1193 double b = dist / bValue;
1194 return String.format(Locale.US, "%." + (b<10 ? 2 : 1) + "f %s", b, bName);
1195 } else if (a < 0.01)
1196 return "< 0.01 " + aName;
1197 else
1198 return String.format(Locale.US, "%." + (a<10 ? 2 : 1) + "f %s", a, aName);
1199 }
1200 }
1201
1202 public static final SystemOfMeasurement METRIC_SOM = new SystemOfMeasurement(1, "m", 1000, "km");
1203 public static final SystemOfMeasurement CHINESE_SOM = new SystemOfMeasurement(1.0/3.0, "\u5e02\u5c3a" /* chi */, 500, "\u5e02\u91cc" /* li */);
1204 public static final SystemOfMeasurement IMPERIAL_SOM = new SystemOfMeasurement(0.3048, "ft", 1609.344, "mi");
1205
1206 public static final Map<String, SystemOfMeasurement> SYSTEMS_OF_MEASUREMENT;
1207 static {
1208 SYSTEMS_OF_MEASUREMENT = new LinkedHashMap<String, SystemOfMeasurement>();
1209 SYSTEMS_OF_MEASUREMENT.put(marktr("Metric"), METRIC_SOM);
1210 SYSTEMS_OF_MEASUREMENT.put(marktr("Chinese"), CHINESE_SOM);
1211 SYSTEMS_OF_MEASUREMENT.put(marktr("Imperial"), IMPERIAL_SOM);
1212 }
1213
1214 private static class CursorInfo {
1215 public Cursor cursor;
1216 public Object object;
1217 public CursorInfo(Cursor c, Object o) {
1218 cursor = c;
1219 object = o;
1220 }
1221 }
1222
1223 private LinkedList<CursorInfo> Cursors = new LinkedList<CursorInfo>();
1224 /**
1225 * Set new cursor.
1226 */
1227 public void setNewCursor(Cursor cursor, Object reference) {
1228 if(Cursors.size() > 0) {
1229 CursorInfo l = Cursors.getLast();
1230 if(l != null && l.cursor == cursor && l.object == reference)
1231 return;
1232 stripCursors(reference);
1233 }
1234 Cursors.add(new CursorInfo(cursor, reference));
1235 setCursor(cursor);
1236 }
1237 public void setNewCursor(int cursor, Object reference) {
1238 setNewCursor(Cursor.getPredefinedCursor(cursor), reference);
1239 }
1240 /**
1241 * Remove the new cursor and reset to previous
1242 */
1243 public void resetCursor(Object reference) {
1244 if(Cursors.size() == 0) {
1245 setCursor(null);
1246 return;
1247 }
1248 CursorInfo l = Cursors.getLast();
1249 stripCursors(reference);
1250 if(l != null && l.object == reference) {
1251 if(Cursors.size() == 0) {
1252 setCursor(null);
1253 } else {
1254 setCursor(Cursors.getLast().cursor);
1255 }
1256 }
1257 }
1258
1259 private void stripCursors(Object reference) {
1260 LinkedList<CursorInfo> c = new LinkedList<CursorInfo>();
1261 for(CursorInfo i : Cursors) {
1262 if(i.object != reference) {
1263 c.add(i);
1264 }
1265 }
1266 Cursors = c;
1267 }
1268}
Note: See TracBrowser for help on using the repository browser.