#!/usr/bin/python # Lakewalker II. # 2007-07-09: Initial public release (v0.2) by Dshpak # 2007-07-10: v0.3: Added support for OSM input files. Also reduced start_radius_big, and fixed a division-by-zero error in the degenerate case of point_line_distance(). # 2007-08-04: Added experimental non-recursive Douglas-Peucker algorithm (--dp-nr). Added --startdir option. # 2007-08-06: v0.4: Bounding box support (--left, --right, --top, and --bottom), as well as new --josm mode for JOSM integration. This isn't perfect yet, but it's a good start. """Lakewalker II - A tool to automatically download and trace Landsat imagery, to generate OpenStreetMap data. Requires the Python Imaging Library, available from http://www.pythonware.com/products/pil/""" version="Lakewalker II v0.4" # TODO: # - Accept threshold tags in OSM input files. # - Command line options: # - direction (deosil/widdershins) # - layer to use (monochrome only?) # - additional tags for the way # - Landsat download retries (count and delay) # - radii for loop detection # - fname for z12 tile output (list or script) # - path to tilesGen for z12 script output # - debug mode (extra tags on nodes) (make this non-uploadable?) # - The "got stuck" message should output coords # - Better "got stuck" detection (detect mini loops) # - Offset nodes outwards by a half-pixel or so, to prevent duplicate segments # - Automatic threshold detection # - (Correct/tested) non-recursive DP simplification # # # For JOSM integration: # - Add a --tmpdir option that controls the location of the Landsat # tiles, the results text file, and the lake.osm file (unless it's # got an absolute path # - Add a --nocache option that keeps WMS tiles in memory but not on disk. import math import os import urllib from PIL import Image import OSMReader import time import optparse options = None start_radius_big = 0.001 start_radius_small = 0.0002 dirs = ((1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)) dirnames = ["east", "northeast", "north", "northwest", "west", "southwest", "south", "southeast"] dirabbrevs = ["e", "ne", "n", "nw", "w", "sw", "s", "se"] class FatalError(Exception): pass def message(s): if options.josm_mode: print "m %s" % s else: print s def error(s): if options.josm_mode: print "e %s" % s else: print s class BBox: def __init__(self, top = 90, left = -180, bottom = -90, right = 180): self.left = left self.right = right self.top = top self.bottom = bottom def contains(self, loc): (lat, lon) = loc if lat > self.top or lat < self.bottom: return False if (self.right - self.left) % 360 == 0: return True return (lon - self.left) % 360 <= (self.right - self.left) % 360 def download_landsat(c1, c2, width, height, fname): layer = "global_mosaic_base" style = options.wmslayer (min_lat, min_lon) = c1 (max_lat, max_lon) = c2 message("Downloading Landsat tile for (%.6f,%.6f)-(%.6f,%.6f)." % (min_lat, min_lon, max_lat, max_lon)) url = "http://onearth.jpl.nasa.gov/wms.cgi?request=GetMap&layers=%s&styles=%s&srs=EPSG:4326&format=image/png&bbox=%0.6f,%0.6f,%0.6f,%0.6f&width=%d&height=%d" % (layer, style, min_lon, min_lat, max_lon, max_lat, width, height) #print url try: urllib.urlretrieve(url, fname) except IOError, e: raise FatalError("Error downloading tile: %s" % e.strerror) if not os.path.exists(fname): raise FatalError("Error: Could not retreive url %s" % url) def xy_to_geo(xy): (x, y) = xy (lat, lon) = (y / float(options.resolution), x / float(options.resolution)) return (lat, lon) def geo_to_xy(geo): (lat, lon) = geo coord = lambda L: math.floor(L * options.resolution + 0.5) (x, y) = (coord(lon), coord(lat)) return (x, y) class WMSManager: def __init__(self): self.images = {} def get_tile(self, xy): fail_count = 0 im = None while im is None and fail_count < 4: (x, y) = xy bottom_left_xy = (int(math.floor(x / options.tilesize)) * options.tilesize, int(math.floor(y / options.tilesize)) * options.tilesize) top_right_xy = (bottom_left_xy[0] + options.tilesize, bottom_left_xy[1] + options.tilesize) fname = options.wmslayer+"/landsat_%d_%d_xy_%d_%d.png" % (options.resolution, options.tilesize, bottom_left_xy[0], bottom_left_xy[1]) im = self.images.get(fname, None) if im is None: if not os.path.exists(fname): bottom_left = xy_to_geo(bottom_left_xy) top_right = xy_to_geo(top_right_xy) download_landsat(bottom_left, top_right, options.tilesize, options.tilesize, fname) if not os.path.exists(fname): raise FatalError("Error: Could not get image file %s" % fname) try: im = Image.open(fname) self.images[fname] = im message("Using imagery in %s for %s." % (fname, xy_to_geo(xy))) except IOError: error("Download was corrupt...Deleting %s..." % fname) os.unlink(fname) im = None if im is None: message("Sleeping and retrying download...") time.sleep(4) fail_count = fail_count + 1 if im is None: #if os.path.exists(fname): # print open(fname).readlines() raise FatalError("Couldn't get image file %s." % fname) #return (im, top_left_xy) return (im, bottom_left_xy) def get_pixel(self, xy): (x, y) = xy (tile, (tx, ty)) = self.get_tile(xy) tile_xy = (x - tx, (options.tilesize - 1) - (y - ty)) #print "%s maps to %s" % (xy, tile_xy) return tile.getpixel(tile_xy) def trace_lake(loc, threshold, start_dir, bbox): wms = WMSManager() xy = geo_to_xy(loc) nodelist = [] message("Starting coordinate: %.4f, %.4f" % loc) message("Starting position: %d, %d" % xy) if not bbox.contains(loc): raise FatalError("Error: Starting location is outside bounding box!") while True: loc = xy_to_geo(xy) if not bbox.contains(loc): break v = wms.get_pixel(xy) if v > threshold: break xy = (xy[0] + dirs[start_dir][0], xy[1] + dirs[start_dir][1]) start_xy = xy start_loc = xy_to_geo(xy) message("Found shore at lat %.4f lon %.4f" % start_loc) #dirs = ((1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)) last_dir = start_dir detect_loop = False for i in xrange(options.maxnodes): if i % 250 == 0: if i > 0: message("%s nodes so far..." % i) for d in xrange(1, len(dirs)): new_dir = dirs[(last_dir + d + 4) % 8] test_xy = (xy[0] + new_dir[0], xy[1] + new_dir[1]) test_loc = xy_to_geo(test_xy) if not bbox.contains(test_loc): break v = wms.get_pixel(test_xy) #print "%s: %s: %s" % (new_dir, test_xy, v) if v > threshold: break if d == 8: error("Got stuck.") break #print "Moving to %s, direction %s (was %s)" % (test_xy, new_dir, dirs[last_dir]) last_dir = (last_dir + d + 4) % 8 xy = test_xy if xy == start_xy: break loc = xy_to_geo(xy) nodelist.append(loc) start_proximity = (loc[0] - start_loc[0]) ** 2 + (loc[1] - start_loc[1]) ** 2 if detect_loop: if start_proximity < start_radius_small ** 2: break else: if start_proximity > start_radius_big ** 2: detect_loop = True return nodelist def vertex_reduce(nodes, proximity): test_v = nodes[0] reduced_nodes = [test_v] prox_sq = proximity ** 2 for v in nodes: if (v[0] - test_v[0]) ** 2 + (v[1] - test_v[1]) ** 2 > prox_sq: reduced_nodes.append(v) test_v = v return reduced_nodes def point_line_distance(p0, p1, p2): ((x0, y0), (x1, y1), (x2, y2)) = (p0, p1, p2) if x2 == x1 and y2 == y1: # Degenerate cast: the "line" is actually a point. return math.sqrt((x1-x0)**2 + (y1-y0)**2) else: # I don't understand this at all. Thank you, Mathworld. # http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / math.sqrt((x2-x1)**2 + (y2-y1)**2) def douglas_peucker(nodes, epsilon): #print "Running DP on %d nodes" % len(nodes) farthest_node = None farthest_dist = 0 first = nodes[0] last = nodes[-1] for i in xrange(1, len(nodes) - 1): d = point_line_distance(nodes[i], first, last) if d > farthest_dist: farthest_dist = d farthest_node = i if farthest_dist > epsilon: seg_a = douglas_peucker(nodes[0:farthest_node+1], epsilon) seg_b = douglas_peucker(nodes[farthest_node:-1], epsilon) #print "Minimized %d nodes to %d + %d nodes" % (len(nodes), len(seg_a), len(seg_b)) nodes = seg_a[:-1] + seg_b else: return [nodes[0], nodes[-1]] return nodes def dp_findpoint(nodes, start, end): farthest_node = None farthest_dist = 0 #print "dp_findpoint(nodes, %s, %s)" % (start, end) first = nodes[start] last = nodes[end] for i in xrange(start + 1, end): d = point_line_distance(nodes[i], first, last) if d > farthest_dist: farthest_dist = d farthest_node = i return (farthest_node, farthest_dist) def douglas_peucker_nonrecursive(nodes, epsilon): #print "Running DP on %d nodes" % len(nodes) command_stack = [(0, len(nodes) - 1)] result_stack = [] while len(command_stack) > 0: cmd = command_stack.pop() if type(cmd) == tuple: (start, end) = cmd (node, dist) = dp_findpoint(nodes, start, end) if dist > epsilon: command_stack.append("+") command_stack.append((start, node)) command_stack.append((node, end)) else: result_stack.append((start, end)) elif cmd == "+": first = result_stack.pop() second = result_stack.pop() if first[-1] == second[0]: result_stack.append(first + second[1:]) #print "Added %s and %s; result is %s" % (first, second, result_stack[-1]) else: error("ERROR: Cannot connect nodestrings!") #print first #print second return else: error("ERROR: Can't understand command \"%s\"" % (cmd,)) return if len(result_stack) == 1: return [nodes[x] for x in result_stack[0]] else: error("ERROR: Command stack is empty but result stack has %d nodes!" % len(result_stack)) return farthest_node = None farthest_dist = 0 first = nodes[0] last = nodes[-1] for i in xrange(1, len(nodes) - 1): d = point_line_distance(nodes[i], first, last) if d > farthest_dist: farthest_dist = d farthest_node = i if farthest_dist > epsilon: seg_a = douglas_peucker(nodes[0:farthest_node+1], epsilon) seg_b = douglas_peucker(nodes[farthest_node:-1], epsilon) #print "Minimized %d nodes to %d + %d nodes" % (len(nodes), len(seg_a), len(seg_b)) nodes = seg_a[:-1] + seg_b else: return [nodes[0], nodes[-1]] return nodes def output_to_josm(lakelist): # Description of JOSM output format: # m text - Status message text, to be displayed in a display window # e text - Error message text # s nnn - Start full node list, nnn tracings following # t nnn - Start tracing node list, nnn nodes following (i.e. there will be one of these for each lake where multiple start points specified) # n lat lon - A node # x - End of data print "s %s" % len(lakelist) for nodelist in lakelist: print "t %s" % len(nodelist) for node in nodelist: print "n %.7f %.7f" % (node[0], node[1]) print "x" def write_osm(f, lakelist, waysize): f.write('') cur_id = -1 way_count = 0 for nodelist in lakelist: first_node_id = cur_id cur_way = [] ways = [cur_way] for loc in nodelist: #f.write(' \n' % (cur_id, loc[0], loc[1], -cur_id, geo_to_xy(loc)[0], geo_to_xy(loc)[1])) f.write('' % (cur_id, loc[0], loc[1])) last_node_id = cur_id cur_id = cur_id - 1 # print "Nodes: %d, %d" % (first_node_id, last_node_id) first_segment_id = cur_id for seg in xrange(first_node_id, last_node_id, -1): f.write('' % (cur_id, seg, seg-1)) cur_id = cur_id - 1 f.write('' % (cur_id, last_node_id, first_node_id)) last_segment_id = cur_id cur_id = cur_id - 1 # print "Segments: %d, %d" % (first_segment_id, last_segment_id) for seg in xrange(first_segment_id, last_segment_id - 1, -1): if len(cur_way) >= waysize: cur_way = [] ways.append(cur_way) cur_way.append(seg) for way in ways: f.write('' % cur_id) cur_id = cur_id - 1 for seg in way: f.write('' % seg) f.write('' % options.natural_type) f.write('') f.write('') way_count = way_count + len(ways) f.write('') message("Generated %d %s." % (way_count, ["way", "ways"][way_count > 0])) def get_locs(infile): nodes = [] segments = [] ways = [] reader = OSMReader.OSMReader() reader.nodeHandler = lambda x: nodes.append(x) reader.segmentHandler = lambda x: segments.append(x) reader.wayHandler = lambda x: ways.append(x) reader.run(file(infile)) if len(segments) > 0 or len(ways) > 0: raise FatalError("Error: Input file must only contain nodes -- no segments or ways.") if len(nodes) == 0: raise FatalError("Error: No nodes found in input file.") return [((node.lat, node.lon), options.threshold) for node in nodes] def main(): parser = optparse.OptionParser(version=version) parser.add_option("--lat", type="float", metavar="LATITUDE", help="Starting latitude. Required, unless --infile is used..") parser.add_option("--lon", type="float", metavar="LONGITUDE", help="Starting longitude. Required, unless --infile is used.") parser.add_option("--startdir", type="string", default="east", metavar="DIR", help="Direction to travel from start position when seeking land. Defaults to \"east\".") parser.add_option("--infile", "-i", type="string", metavar="FILE", help="OSM file containing nodes representing starting points.") parser.add_option("--out", "-o", default="lake.osm", dest="outfile", metavar="FILE", help="Output filename. Defaults to lake.osm.") parser.add_option("--threshold", "-t", type="int", default="35", metavar="VALUE", help="Maximum gray value to accept as water (based on Landsat IR-1 data). Can be in the range 0-255. Defaults to 35.") parser.add_option("--maxnodes", type="int", default="50000", metavar="N", help="Maximum number of nodes to generate before bailing out. Defaults to 50000.") parser.add_option("--waylength", type="int", default=250, metavar="MAXLEN", help="Maximum nuber of nodes allowed in one way. Defaults to 250.") parser.add_option("--landsat-res", type="int", default=4000, dest="resolution", metavar="RES", help="Resolution of Landsat tiles, measured in pixels per degree. Defaults to 4000.") parser.add_option("--tilesize", type="int", default=2000, help="Size of one landsat tile, measured in pixels. Defaults to 2000.") parser.add_option("--no-dp", action="store_false", dest="use_dp", default=True, help="Disable Douglas-Peucker line simplification (not recommended)") parser.add_option("--dp-epsilon", type="float", metavar="EPSILON", default=0.0003, help="Accuracy of Douglas-Peucker line simplification, measured in degrees. Lower values give more nodes, and more accurate lines. Defaults to 0.0003.") parser.add_option("--dp-nr", action="store_true", dest="dp_nr", default=False, help="Use experimental non-recursive DP implementation") parser.add_option("--vr", action="store_true", dest="use_vr", default=False, help="Use vertex reduction before applying line simplification (off by default).") parser.add_option("--vr-epsilon", type="float", default=0.0005, metavar="RADIUS", help="Radius used for vertex reduction (measured in degrees). Defaults to 0.0005.") parser.add_option("--water", action="store_const", const="water", dest="natural_type", default="coastline", help="Tag ways as natural=water instead of natural=coastline") parser.add_option("--left", type="float", metavar="LONGITUDE", default=-180, help="Left (west) longitude for bounding box") parser.add_option("--right", type="float", metavar="LONGITUDE", default=180, help="Right (east) longitude for bounding box") parser.add_option("--top", type="float", metavar="LATITUDE", default=90, help="Top (north) latitude for bounding box") parser.add_option("--bottom", type="float", metavar="LATITUDE", default=-90, help="Bottom (south) latitude for bounding box") parser.add_option("--josm", action="store_true", dest="josm_mode", default=False, help="Operate in JOSM plugin mode") parser.add_option("--wms", type="string", dest="wmslayer", default="IR1", help="WMS layer to use") global options # Ugly, I know... (options, args) = parser.parse_args() if len(args) > 0: parser.print_help() return (start_lat, start_lon, infile) = (options.lat, options.lon, options.infile) if (start_lat is None or start_lon is None) and infile is None: if not options.josm_mode: parser.print_help() print error("Error: you must specify a starting latitude and longitude.") return if infile is not None: if start_lat is not None or start_lon is not None: error("Error: you cannot use both --infile and --lat or --lon.") return try: locs = get_locs(infile) #print locs except FatalError, e: error("%s" % e) return else: locs = [((start_lat, start_lon), options.threshold)] dirname = options.startdir.lower() if dirname in dirnames: startdir = dirnames.index(dirname) elif dirname in dirabbrevs: startdir = dirabbrevs.index(dirname) else: error("Error: Can't understand starting direction \"%s\". Vaild options are %s." % (dirname, ", ".join(dirnames + dirabbrevs))) return message("Starting direction is %s." % dirnames[startdir]) bbox = BBox(options.top, options.left, options.bottom, options.right) try: lakes = [] for (loc, threshold) in locs: nodes = trace_lake(loc, threshold, startdir, bbox) message("%d nodes generated." % len(nodes)) if len(nodes) > 0: if options.use_vr: nodes = vertex_reduce(nodes, options.vr_epsilon) message("After vertex reduction, %d nodes remain." % len(nodes)) if options.use_dp: try: if options.dp_nr: nodes = douglas_peucker_nonrecursive(nodes, options.dp_epsilon) #print "Final result: %s" % (nodes,) else: nodes = douglas_peucker(nodes, options.dp_epsilon) message("After Douglas-Peucker approximation, %d nodes remain." % len(nodes)) except FatalError, e: raise e except: raise FatalError("Line simplification failed -- there are probably too many nodes.") lakes.append(nodes) if options.josm_mode: output_to_josm(lakes) else: message("Writing to %s" % options.outfile) f = open(options.outfile, "w") write_osm(f, lakes, options.waylength) f.close() #tiles = tilelist(nodes) #for tile in tiles: # print "./tilesGen.pl xy %d %d; ./upload.pl" % tile #print tiles except FatalError, e: error("%s" % e) error("Bailing out...") if __name__ == "__main__": main()