// License: GPL. For details, see LICENSE file. package org.openstreetmap.josm.tools; import java.awt.Rectangle; import java.awt.geom.Area; import java.awt.geom.Line2D; import java.awt.geom.Path2D; import java.math.BigDecimal; import java.math.MathContext; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.EnumSet; import java.util.LinkedHashSet; import java.util.List; import java.util.Set; import java.util.function.Predicate; import org.openstreetmap.josm.Main; import org.openstreetmap.josm.command.AddCommand; import org.openstreetmap.josm.command.ChangeCommand; import org.openstreetmap.josm.command.Command; import org.openstreetmap.josm.data.coor.EastNorth; import org.openstreetmap.josm.data.osm.BBox; import org.openstreetmap.josm.data.osm.DataSet; import org.openstreetmap.josm.data.osm.MultipolygonBuilder; import org.openstreetmap.josm.data.osm.MultipolygonBuilder.JoinedPolygon; import org.openstreetmap.josm.data.osm.Node; import org.openstreetmap.josm.data.osm.NodePositionComparator; import org.openstreetmap.josm.data.osm.OsmPrimitive; import org.openstreetmap.josm.data.osm.Relation; import org.openstreetmap.josm.data.osm.Way; import org.openstreetmap.josm.data.osm.visitor.paint.relations.Multipolygon; import org.openstreetmap.josm.data.osm.visitor.paint.relations.MultipolygonCache; import org.openstreetmap.josm.data.projection.Projection; import org.openstreetmap.josm.data.projection.Projections; import org.openstreetmap.josm.gui.MainApplication; import org.openstreetmap.josm.gui.MapFrame; /** * Some tools for geometry related tasks. * * @author viesturs */ public final class Geometry { private Geometry() { // Hide default constructor for utils classes } /** * The result types for a {@link Geometry#polygonIntersection(Area, Area)} test */ public enum PolygonIntersection { /** * The first polygon is inside the second one */ FIRST_INSIDE_SECOND, /** * The second one is inside the first */ SECOND_INSIDE_FIRST, /** * The polygons do not overlap */ OUTSIDE, /** * The polygon borders cross each other */ CROSSING } /** * Will find all intersection and add nodes there for list of given ways. * Handles self-intersections too. * And makes commands to add the intersection points to ways. * * Prerequisite: no two nodes have the same coordinates. * * @param ways a list of ways to test * @param test if false, do not build list of Commands, just return nodes * @param cmds list of commands, typically empty when handed to this method. * Will be filled with commands that add intersection nodes to * the ways. * @return list of new nodes */ public static Set addIntersections(List ways, boolean test, List cmds) { int n = ways.size(); @SuppressWarnings("unchecked") List[] newNodes = new ArrayList[n]; BBox[] wayBounds = new BBox[n]; boolean[] changedWays = new boolean[n]; Set intersectionNodes = new LinkedHashSet<>(); //copy node arrays for local usage. for (int pos = 0; pos < n; pos++) { newNodes[pos] = new ArrayList<>(ways.get(pos).getNodes()); wayBounds[pos] = getNodesBounds(newNodes[pos]); changedWays[pos] = false; } DataSet dataset = ways.get(0).getDataSet(); //iterate over all way pairs and introduce the intersections Comparator coordsComparator = new NodePositionComparator(); for (int seg1Way = 0; seg1Way < n; seg1Way++) { for (int seg2Way = seg1Way; seg2Way < n; seg2Way++) { //do not waste time on bounds that do not intersect if (!wayBounds[seg1Way].intersects(wayBounds[seg2Way])) { continue; } List way1Nodes = newNodes[seg1Way]; List way2Nodes = newNodes[seg2Way]; //iterate over primary segmemt for (int seg1Pos = 0; seg1Pos + 1 < way1Nodes.size(); seg1Pos++) { //iterate over secondary segment int seg2Start = seg1Way != seg2Way ? 0 : seg1Pos + 2; //skip the adjacent segment for (int seg2Pos = seg2Start; seg2Pos + 1 < way2Nodes.size(); seg2Pos++) { //need to get them again every time, because other segments may be changed Node seg1Node1 = way1Nodes.get(seg1Pos); Node seg1Node2 = way1Nodes.get(seg1Pos + 1); Node seg2Node1 = way2Nodes.get(seg2Pos); Node seg2Node2 = way2Nodes.get(seg2Pos + 1); int commonCount = 0; //test if we have common nodes to add. if (seg1Node1 == seg2Node1 || seg1Node1 == seg2Node2) { commonCount++; if (seg1Way == seg2Way && seg1Pos == 0 && seg2Pos == way2Nodes.size() -2) { //do not add - this is first and last segment of the same way. } else { intersectionNodes.add(seg1Node1); } } if (seg1Node2 == seg2Node1 || seg1Node2 == seg2Node2) { commonCount++; intersectionNodes.add(seg1Node2); } //no common nodes - find intersection if (commonCount == 0) { EastNorth intersection = getSegmentSegmentIntersection( seg1Node1.getEastNorth(), seg1Node2.getEastNorth(), seg2Node1.getEastNorth(), seg2Node2.getEastNorth()); if (intersection != null) { if (test) { intersectionNodes.add(seg2Node1); return intersectionNodes; } Node newNode = new Node(Main.getProjection().eastNorth2latlon(intersection)); Node intNode = newNode; boolean insertInSeg1 = false; boolean insertInSeg2 = false; //find if the intersection point is at end point of one of the segments, if so use that point //segment 1 if (coordsComparator.compare(newNode, seg1Node1) == 0) { intNode = seg1Node1; } else if (coordsComparator.compare(newNode, seg1Node2) == 0) { intNode = seg1Node2; } else { insertInSeg1 = true; } //segment 2 if (coordsComparator.compare(newNode, seg2Node1) == 0) { intNode = seg2Node1; } else if (coordsComparator.compare(newNode, seg2Node2) == 0) { intNode = seg2Node2; } else { insertInSeg2 = true; } if (insertInSeg1) { way1Nodes.add(seg1Pos +1, intNode); changedWays[seg1Way] = true; //fix seg2 position, as indexes have changed, seg2Pos is always bigger than seg1Pos on the same segment. if (seg2Way == seg1Way) { seg2Pos++; } } if (insertInSeg2) { way2Nodes.add(seg2Pos +1, intNode); changedWays[seg2Way] = true; //Do not need to compare again to already split segment seg2Pos++; } intersectionNodes.add(intNode); if (intNode == newNode) { cmds.add(new AddCommand(dataset, intNode)); } } } else if (test && !intersectionNodes.isEmpty()) return intersectionNodes; } } } } for (int pos = 0; pos < ways.size(); pos++) { if (!changedWays[pos]) { continue; } Way way = ways.get(pos); Way newWay = new Way(way); newWay.setNodes(newNodes[pos]); cmds.add(new ChangeCommand(way, newWay)); } return intersectionNodes; } private static BBox getNodesBounds(List nodes) { BBox bounds = new BBox(nodes.get(0)); for (Node n: nodes) { bounds.add(n); } return bounds; } /** * Tests if given point is to the right side of path consisting of 3 points. * * (Imagine the path is continued beyond the endpoints, so you get two rays * starting from lineP2 and going through lineP1 and lineP3 respectively * which divide the plane into two parts. The test returns true, if testPoint * lies in the part that is to the right when traveling in the direction * lineP1, lineP2, lineP3.) * * @param lineP1 first point in path * @param lineP2 second point in path * @param lineP3 third point in path * @param testPoint point to test * @return true if to the right side, false otherwise */ public static boolean isToTheRightSideOfLine(Node lineP1, Node lineP2, Node lineP3, Node testPoint) { boolean pathBendToRight = angleIsClockwise(lineP1, lineP2, lineP3); boolean rightOfSeg1 = angleIsClockwise(lineP1, lineP2, testPoint); boolean rightOfSeg2 = angleIsClockwise(lineP2, lineP3, testPoint); if (pathBendToRight) return rightOfSeg1 && rightOfSeg2; else return !(!rightOfSeg1 && !rightOfSeg2); } /** * This method tests if secondNode is clockwise to first node. * @param commonNode starting point for both vectors * @param firstNode first vector end node * @param secondNode second vector end node * @return true if first vector is clockwise before second vector. */ public static boolean angleIsClockwise(Node commonNode, Node firstNode, Node secondNode) { return angleIsClockwise(commonNode.getEastNorth(), firstNode.getEastNorth(), secondNode.getEastNorth()); } /** * Finds the intersection of two line segments. * @param p1 the coordinates of the start point of the first specified line segment * @param p2 the coordinates of the end point of the first specified line segment * @param p3 the coordinates of the start point of the second specified line segment * @param p4 the coordinates of the end point of the second specified line segment * @return EastNorth null if no intersection was found, the EastNorth coordinates of the intersection otherwise */ public static EastNorth getSegmentSegmentIntersection(EastNorth p1, EastNorth p2, EastNorth p3, EastNorth p4) { CheckParameterUtil.ensure(p1, "p1", EastNorth::isValid); CheckParameterUtil.ensure(p2, "p2", EastNorth::isValid); CheckParameterUtil.ensure(p3, "p3", EastNorth::isValid); CheckParameterUtil.ensure(p4, "p4", EastNorth::isValid); double x1 = p1.getX(); double y1 = p1.getY(); double x2 = p2.getX(); double y2 = p2.getY(); double x3 = p3.getX(); double y3 = p3.getY(); double x4 = p4.getX(); double y4 = p4.getY(); //TODO: do this locally. //TODO: remove this check after careful testing if (!Line2D.linesIntersect(x1, y1, x2, y2, x3, y3, x4, y4)) return null; // solve line-line intersection in parametric form: // (x1,y1) + (x2-x1,y2-y1)* u = (x3,y3) + (x4-x3,y4-y3)* v // (x2-x1,y2-y1)*u - (x4-x3,y4-y3)*v = (x3-x1,y3-y1) // if 0<= u,v <=1, intersection exists at ( x1+ (x2-x1)*u, y1 + (y2-y1)*u ) double a1 = x2 - x1; double b1 = x3 - x4; double c1 = x3 - x1; double a2 = y2 - y1; double b2 = y3 - y4; double c2 = y3 - y1; // Solve the equations double det = a1*b2 - a2*b1; double uu = b2*c1 - b1*c2; double vv = a1*c2 - a2*c1; double mag = Math.abs(uu)+Math.abs(vv); if (Math.abs(det) > 1e-12 * mag) { double u = uu/det, v = vv/det; if (u > -1e-8 && u < 1+1e-8 && v > -1e-8 && v < 1+1e-8) { if (u < 0) u = 0; if (u > 1) u = 1.0; return new EastNorth(x1+a1*u, y1+a2*u); } else { return null; } } else { // parallel lines return null; } } /** * Finds the intersection of two lines of infinite length. * * @param p1 first point on first line * @param p2 second point on first line * @param p3 first point on second line * @param p4 second point on second line * @return EastNorth null if no intersection was found, the coordinates of the intersection otherwise * @throws IllegalArgumentException if a parameter is null or without valid coordinates */ public static EastNorth getLineLineIntersection(EastNorth p1, EastNorth p2, EastNorth p3, EastNorth p4) { CheckParameterUtil.ensure(p1, "p1", EastNorth::isValid); CheckParameterUtil.ensure(p2, "p2", EastNorth::isValid); CheckParameterUtil.ensure(p3, "p3", EastNorth::isValid); CheckParameterUtil.ensure(p4, "p4", EastNorth::isValid); // Basically, the formula from wikipedia is used: // https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection // However, large numbers lead to rounding errors (see #10286). // To avoid this, p1 is first substracted from each of the points: // p1' = 0 // p2' = p2 - p1 // p3' = p3 - p1 // p4' = p4 - p1 // In the end, p1 is added to the intersection point of segment p1'/p2' // and segment p3'/p4'. // Convert line from (point, point) form to ax+by=c double a1 = p2.getY() - p1.getY(); double b1 = p1.getX() - p2.getX(); double a2 = p4.getY() - p3.getY(); double b2 = p3.getX() - p4.getX(); // Solve the equations double det = a1 * b2 - a2 * b1; if (det == 0) return null; // Lines are parallel double c2 = (p4.getX() - p1.getX()) * (p3.getY() - p1.getY()) - (p3.getX() - p1.getX()) * (p4.getY() - p1.getY()); return new EastNorth(b1 * c2 / det + p1.getX(), -a1 * c2 / det + p1.getY()); } /** * Check if the segment p1 - p2 is parallel to p3 - p4 * @param p1 First point for first segment * @param p2 Second point for first segment * @param p3 First point for second segment * @param p4 Second point for second segment * @return true if they are parallel or close to parallel */ public static boolean segmentsParallel(EastNorth p1, EastNorth p2, EastNorth p3, EastNorth p4) { CheckParameterUtil.ensure(p1, "p1", EastNorth::isValid); CheckParameterUtil.ensure(p2, "p2", EastNorth::isValid); CheckParameterUtil.ensure(p3, "p3", EastNorth::isValid); CheckParameterUtil.ensure(p4, "p4", EastNorth::isValid); // Convert line from (point, point) form to ax+by=c double a1 = p2.getY() - p1.getY(); double b1 = p1.getX() - p2.getX(); double a2 = p4.getY() - p3.getY(); double b2 = p3.getX() - p4.getX(); // Solve the equations double det = a1 * b2 - a2 * b1; // remove influence of of scaling factor det /= Math.sqrt(a1*a1 + b1*b1) * Math.sqrt(a2*a2 + b2*b2); return Math.abs(det) < 1e-3; } private static EastNorth closestPointTo(EastNorth p1, EastNorth p2, EastNorth point, boolean segmentOnly) { CheckParameterUtil.ensureParameterNotNull(p1, "p1"); CheckParameterUtil.ensureParameterNotNull(p2, "p2"); CheckParameterUtil.ensureParameterNotNull(point, "point"); double ldx = p2.getX() - p1.getX(); double ldy = p2.getY() - p1.getY(); //segment zero length if (ldx == 0 && ldy == 0) return p1; double pdx = point.getX() - p1.getX(); double pdy = point.getY() - p1.getY(); double offset = (pdx * ldx + pdy * ldy) / (ldx * ldx + ldy * ldy); if (segmentOnly && offset <= 0) return p1; else if (segmentOnly && offset >= 1) return p2; else return p1.interpolate(p2, offset); } /** * Calculates closest point to a line segment. * @param segmentP1 First point determining line segment * @param segmentP2 Second point determining line segment * @param point Point for which a closest point is searched on line segment [P1,P2] * @return segmentP1 if it is the closest point, segmentP2 if it is the closest point, * a new point if closest point is between segmentP1 and segmentP2. * @see #closestPointToLine * @since 3650 */ public static EastNorth closestPointToSegment(EastNorth segmentP1, EastNorth segmentP2, EastNorth point) { return closestPointTo(segmentP1, segmentP2, point, true); } /** * Calculates closest point to a line. * @param lineP1 First point determining line * @param lineP2 Second point determining line * @param point Point for which a closest point is searched on line (P1,P2) * @return The closest point found on line. It may be outside the segment [P1,P2]. * @see #closestPointToSegment * @since 4134 */ public static EastNorth closestPointToLine(EastNorth lineP1, EastNorth lineP2, EastNorth point) { return closestPointTo(lineP1, lineP2, point, false); } /** * This method tests if secondNode is clockwise to first node. * * The line through the two points commonNode and firstNode divides the * plane into two parts. The test returns true, if secondNode lies in * the part that is to the right when traveling in the direction from * commonNode to firstNode. * * @param commonNode starting point for both vectors * @param firstNode first vector end node * @param secondNode second vector end node * @return true if first vector is clockwise before second vector. */ public static boolean angleIsClockwise(EastNorth commonNode, EastNorth firstNode, EastNorth secondNode) { CheckParameterUtil.ensure(commonNode, "commonNode", EastNorth::isValid); CheckParameterUtil.ensure(firstNode, "firstNode", EastNorth::isValid); CheckParameterUtil.ensure(secondNode, "secondNode", EastNorth::isValid); double dy1 = firstNode.getY() - commonNode.getY(); double dy2 = secondNode.getY() - commonNode.getY(); double dx1 = firstNode.getX() - commonNode.getX(); double dx2 = secondNode.getX() - commonNode.getX(); return dy1 * dx2 - dx1 * dy2 > 0; } /** * Returns the Area of a polygon, from its list of nodes. * @param polygon List of nodes forming polygon * @return Area for the given list of nodes (EastNorth coordinates) * @since 6841 */ public static Area getArea(List polygon) { Path2D path = new Path2D.Double(); boolean begin = true; for (Node n : polygon) { EastNorth en = n.getEastNorth(); if (en != null) { if (begin) { path.moveTo(en.getX(), en.getY()); begin = false; } else { path.lineTo(en.getX(), en.getY()); } } } if (!begin) { path.closePath(); } return new Area(path); } /** * Builds a path from a list of nodes * @param polygon Nodes, forming a closed polygon * @param path2d path to add to; can be null, then a new path is created * @return the path (LatLon coordinates) */ public static Path2D buildPath2DLatLon(List polygon, Path2D path2d) { Path2D path = path2d != null ? path2d : new Path2D.Double(); boolean begin = true; for (Node n : polygon) { if (begin) { path.moveTo(n.lon(), n.lat()); begin = false; } else { path.lineTo(n.lon(), n.lat()); } } if (!begin) { path.closePath(); } return path; } /** * Returns the Area of a polygon, from the multipolygon relation. * @param multipolygon the multipolygon relation * @return Area for the multipolygon (LatLon coordinates) */ public static Area getAreaLatLon(Relation multipolygon) { MapFrame map = MainApplication.getMap(); final Multipolygon mp = map == null || map.mapView == null ? new Multipolygon(multipolygon) : MultipolygonCache.getInstance().get(multipolygon); Path2D path = new Path2D.Double(); path.setWindingRule(Path2D.WIND_EVEN_ODD); for (Multipolygon.PolyData pd : mp.getCombinedPolygons()) { buildPath2DLatLon(pd.getNodes(), path); for (Multipolygon.PolyData pdInner : pd.getInners()) { buildPath2DLatLon(pdInner.getNodes(), path); } } return new Area(path); } /** * Tests if two polygons intersect. * @param first List of nodes forming first polygon * @param second List of nodes forming second polygon * @return intersection kind */ public static PolygonIntersection polygonIntersection(List first, List second) { Area a1 = getArea(first); Area a2 = getArea(second); return polygonIntersection(a1, a2); } /** * Tests if two polygons intersect. * @param a1 Area of first polygon * @param a2 Area of second polygon * @return intersection kind * @since 6841 */ public static PolygonIntersection polygonIntersection(Area a1, Area a2) { return polygonIntersection(a1, a2, 1.0); } /** * Tests if two polygons intersect. * @param a1 Area of first polygon * @param a2 Area of second polygon * @param eps an area threshold, everything below is considered an empty intersection * @return intersection kind */ public static PolygonIntersection polygonIntersection(Area a1, Area a2, double eps) { Area inter = new Area(a1); inter.intersect(a2); Rectangle bounds = inter.getBounds(); if (inter.isEmpty() || bounds.getHeight()*bounds.getWidth() <= eps) { return PolygonIntersection.OUTSIDE; } else if (a2.getBounds2D().contains(a1.getBounds2D()) && inter.equals(a1)) { return PolygonIntersection.FIRST_INSIDE_SECOND; } else if (a1.getBounds2D().contains(a2.getBounds2D()) && inter.equals(a2)) { return PolygonIntersection.SECOND_INSIDE_FIRST; } else { return PolygonIntersection.CROSSING; } } /** * Tests if point is inside a polygon. The polygon can be self-intersecting. In such case the contains function works in xor-like manner. * @param polygonNodes list of nodes from polygon path. * @param point the point to test * @return true if the point is inside polygon. */ public static boolean nodeInsidePolygon(Node point, List polygonNodes) { if (polygonNodes.size() < 2) return false; //iterate each side of the polygon, start with the last segment Node oldPoint = polygonNodes.get(polygonNodes.size() - 1); if (!oldPoint.isLatLonKnown()) { return false; } boolean inside = false; Node p1, p2; for (Node newPoint : polygonNodes) { //skip duplicate points if (newPoint.equals(oldPoint)) { continue; } if (!newPoint.isLatLonKnown()) { return false; } //order points so p1.lat <= p2.lat if (newPoint.getEastNorth().getY() > oldPoint.getEastNorth().getY()) { p1 = oldPoint; p2 = newPoint; } else { p1 = newPoint; p2 = oldPoint; } EastNorth pEN = point.getEastNorth(); EastNorth opEN = oldPoint.getEastNorth(); EastNorth npEN = newPoint.getEastNorth(); EastNorth p1EN = p1.getEastNorth(); EastNorth p2EN = p2.getEastNorth(); if (pEN != null && opEN != null && npEN != null && p1EN != null && p2EN != null) { //test if the line is crossed and if so invert the inside flag. if ((npEN.getY() < pEN.getY()) == (pEN.getY() <= opEN.getY()) && (pEN.getX() - p1EN.getX()) * (p2EN.getY() - p1EN.getY()) < (p2EN.getX() - p1EN.getX()) * (pEN.getY() - p1EN.getY())) { inside = !inside; } } oldPoint = newPoint; } return inside; } /** * Returns area of a closed way in square meters. * * @param way Way to measure, should be closed (first node is the same as last node) * @return area of the closed way. */ public static double closedWayArea(Way way) { return getAreaAndPerimeter(way.getNodes(), Projections.getProjectionByCode("EPSG:54008")).getArea(); } /** * Returns area of a multipolygon in square meters. * * @param multipolygon the multipolygon to measure * @return area of the multipolygon. */ public static double multipolygonArea(Relation multipolygon) { double area = 0.0; MapFrame map = MainApplication.getMap(); final Multipolygon mp = map == null || map.mapView == null ? new Multipolygon(multipolygon) : MultipolygonCache.getInstance().get(multipolygon); for (Multipolygon.PolyData pd : mp.getCombinedPolygons()) { area += pd.getAreaAndPerimeter(Projections.getProjectionByCode("EPSG:54008")).getArea(); } return area; } /** * Computes the area of a closed way and multipolygon in square meters, or {@code null} for other primitives * * @param osm the primitive to measure * @return area of the primitive, or {@code null} */ public static Double computeArea(OsmPrimitive osm) { if (osm instanceof Way && ((Way) osm).isClosed()) { return closedWayArea((Way) osm); } else if (osm instanceof Relation && ((Relation) osm).isMultipolygon() && !((Relation) osm).hasIncompleteMembers()) { return multipolygonArea((Relation) osm); } else { return null; } } /** * Determines whether a way is oriented clockwise. * * Internals: Assuming a closed non-looping way, compute twice the area * of the polygon using the formula {@code 2 * area = sum (X[n] * Y[n+1] - X[n+1] * Y[n])}. * If the area is negative the way is ordered in a clockwise direction. * * See http://paulbourke.net/geometry/polyarea/ * * @param w the way to be checked. * @return true if and only if way is oriented clockwise. * @throws IllegalArgumentException if way is not closed (see {@link Way#isClosed}). */ public static boolean isClockwise(Way w) { return isClockwise(w.getNodes()); } /** * Determines whether path from nodes list is oriented clockwise. * @param nodes Nodes list to be checked. * @return true if and only if way is oriented clockwise. * @throws IllegalArgumentException if way is not closed (see {@link Way#isClosed}). * @see #isClockwise(Way) */ public static boolean isClockwise(List nodes) { int nodesCount = nodes.size(); if (nodesCount < 3 || nodes.get(0) != nodes.get(nodesCount - 1)) { throw new IllegalArgumentException("Way must be closed to check orientation."); } double area2 = 0.; for (int node = 1; node <= /*sic! consider last-first as well*/ nodesCount; node++) { Node coorPrev = nodes.get(node - 1); Node coorCurr = nodes.get(node % nodesCount); area2 += coorPrev.lon() * coorCurr.lat(); area2 -= coorCurr.lon() * coorPrev.lat(); } return area2 < 0; } /** * Returns angle of a segment defined with 2 point coordinates. * * @param p1 first point * @param p2 second point * @return Angle in radians (-pi, pi] */ public static double getSegmentAngle(EastNorth p1, EastNorth p2) { CheckParameterUtil.ensure(p1, "p1", EastNorth::isValid); CheckParameterUtil.ensure(p2, "p2", EastNorth::isValid); return Math.atan2(p2.north() - p1.north(), p2.east() - p1.east()); } /** * Returns angle of a corner defined with 3 point coordinates. * * @param p1 first point * @param p2 Common endpoint * @param p3 third point * @return Angle in radians (-pi, pi] */ public static double getCornerAngle(EastNorth p1, EastNorth p2, EastNorth p3) { CheckParameterUtil.ensure(p1, "p1", EastNorth::isValid); CheckParameterUtil.ensure(p2, "p2", EastNorth::isValid); CheckParameterUtil.ensure(p3, "p3", EastNorth::isValid); Double result = getSegmentAngle(p2, p1) - getSegmentAngle(p2, p3); if (result <= -Math.PI) { result += 2 * Math.PI; } if (result > Math.PI) { result -= 2 * Math.PI; } return result; } /** * Compute the centroid/barycenter of nodes * @param nodes Nodes for which the centroid is wanted * @return the centroid of nodes * @see Geometry#getCenter */ public static EastNorth getCentroid(List nodes) { BigDecimal area = BigDecimal.ZERO; BigDecimal north = BigDecimal.ZERO; BigDecimal east = BigDecimal.ZERO; // See https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon for the equation used here for (int i = 0; i < nodes.size(); i++) { EastNorth n0 = nodes.get(i).getEastNorth(); EastNorth n1 = nodes.get((i+1) % nodes.size()).getEastNorth(); if (n0 != null && n1 != null && n0.isValid() && n1.isValid()) { BigDecimal x0 = BigDecimal.valueOf(n0.east()); BigDecimal y0 = BigDecimal.valueOf(n0.north()); BigDecimal x1 = BigDecimal.valueOf(n1.east()); BigDecimal y1 = BigDecimal.valueOf(n1.north()); BigDecimal k = x0.multiply(y1, MathContext.DECIMAL128).subtract(y0.multiply(x1, MathContext.DECIMAL128)); area = area.add(k, MathContext.DECIMAL128); east = east.add(k.multiply(x0.add(x1, MathContext.DECIMAL128), MathContext.DECIMAL128)); north = north.add(k.multiply(y0.add(y1, MathContext.DECIMAL128), MathContext.DECIMAL128)); } } BigDecimal d = new BigDecimal(3, MathContext.DECIMAL128); // 1/2 * 6 = 3 area = area.multiply(d, MathContext.DECIMAL128); if (area.compareTo(BigDecimal.ZERO) != 0) { north = north.divide(area, MathContext.DECIMAL128); east = east.divide(area, MathContext.DECIMAL128); } return new EastNorth(east.doubleValue(), north.doubleValue()); } /** * Compute center of the circle closest to different nodes. * * Ensure exact center computation in case nodes are already aligned in circle. * This is done by least square method. * Let be a_i x + b_i y + c_i = 0 equations of bisectors of each edges. * Center must be intersection of all bisectors. *
     *          [ a1  b1  ]         [ -c1 ]
     * With A = [ ... ... ] and Y = [ ... ]
     *          [ an  bn  ]         [ -cn ]
     * 
* An approximation of center of circle is (At.A)^-1.At.Y * @param nodes Nodes parts of the circle (at least 3) * @return An approximation of the center, of null if there is no solution. * @see Geometry#getCentroid * @since 6934 */ public static EastNorth getCenter(List nodes) { int nc = nodes.size(); if (nc < 3) return null; /** * Equation of each bisector ax + by + c = 0 */ double[] a = new double[nc]; double[] b = new double[nc]; double[] c = new double[nc]; // Compute equation of bisector for (int i = 0; i < nc; i++) { EastNorth pt1 = nodes.get(i).getEastNorth(); EastNorth pt2 = nodes.get((i+1) % nc).getEastNorth(); a[i] = pt1.east() - pt2.east(); b[i] = pt1.north() - pt2.north(); double d = Math.sqrt(a[i]*a[i] + b[i]*b[i]); if (d == 0) return null; a[i] /= d; b[i] /= d; double xC = (pt1.east() + pt2.east()) / 2; double yC = (pt1.north() + pt2.north()) / 2; c[i] = -(a[i]*xC + b[i]*yC); } // At.A = [aij] double a11 = 0, a12 = 0, a22 = 0; // At.Y = [bi] double b1 = 0, b2 = 0; for (int i = 0; i < nc; i++) { a11 += a[i]*a[i]; a12 += a[i]*b[i]; a22 += b[i]*b[i]; b1 -= a[i]*c[i]; b2 -= b[i]*c[i]; } // (At.A)^-1 = [invij] double det = a11*a22 - a12*a12; if (Math.abs(det) < 1e-5) return null; double inv11 = a22/det; double inv12 = -a12/det; double inv22 = a11/det; // center (xC, yC) = (At.A)^-1.At.y double xC = inv11*b1 + inv12*b2; double yC = inv12*b1 + inv22*b2; return new EastNorth(xC, yC); } /** * Tests if the {@code node} is inside the multipolygon {@code multiPolygon}. The nullable argument * {@code isOuterWayAMatch} allows to decide if the immediate {@code outer} way of the multipolygon is a match. * @param node node * @param multiPolygon multipolygon * @param isOuterWayAMatch allows to decide if the immediate {@code outer} way of the multipolygon is a match * @return {@code true} if the node is inside the multipolygon */ public static boolean isNodeInsideMultiPolygon(Node node, Relation multiPolygon, Predicate isOuterWayAMatch) { return isPolygonInsideMultiPolygon(Collections.singletonList(node), multiPolygon, isOuterWayAMatch); } /** * Tests if the polygon formed by {@code nodes} is inside the multipolygon {@code multiPolygon}. The nullable argument * {@code isOuterWayAMatch} allows to decide if the immediate {@code outer} way of the multipolygon is a match. *

* If {@code nodes} contains exactly one element, then it is checked whether that one node is inside the multipolygon. * @param nodes nodes forming the polygon * @param multiPolygon multipolygon * @param isOuterWayAMatch allows to decide if the immediate {@code outer} way of the multipolygon is a match * @return {@code true} if the polygon formed by nodes is inside the multipolygon */ public static boolean isPolygonInsideMultiPolygon(List nodes, Relation multiPolygon, Predicate isOuterWayAMatch) { // Extract outer/inner members from multipolygon final Pair, List> outerInner; try { outerInner = MultipolygonBuilder.joinWays(multiPolygon); } catch (MultipolygonBuilder.JoinedPolygonCreationException ex) { Logging.trace(ex); Logging.debug("Invalid multipolygon " + multiPolygon); return false; } // Test if object is inside an outer member for (JoinedPolygon out : outerInner.a) { if (nodes.size() == 1 ? nodeInsidePolygon(nodes.get(0), out.getNodes()) : EnumSet.of(PolygonIntersection.FIRST_INSIDE_SECOND, PolygonIntersection.CROSSING).contains( polygonIntersection(nodes, out.getNodes()))) { boolean insideInner = false; // If inside an outer, check it is not inside an inner for (JoinedPolygon in : outerInner.b) { if (polygonIntersection(in.getNodes(), out.getNodes()) == PolygonIntersection.FIRST_INSIDE_SECOND && (nodes.size() == 1 ? nodeInsidePolygon(nodes.get(0), in.getNodes()) : polygonIntersection(nodes, in.getNodes()) == PolygonIntersection.FIRST_INSIDE_SECOND)) { insideInner = true; break; } } // Inside outer but not inside inner -> the polygon appears to be inside a the multipolygon if (!insideInner) { // Final check using predicate if (isOuterWayAMatch == null || isOuterWayAMatch.test(out.ways.get(0) /* TODO give a better representation of the outer ring to the predicate */)) { return true; } } } } return false; } /** * Data class to hold two double values (area and perimeter of a polygon). */ public static class AreaAndPerimeter { private final double area; private final double perimeter; /** * Create a new {@link AreaAndPerimeter} * @param area The area * @param perimeter The perimeter */ public AreaAndPerimeter(double area, double perimeter) { this.area = area; this.perimeter = perimeter; } /** * Gets the area * @return The area size */ public double getArea() { return area; } /** * Gets the perimeter * @return The perimeter length */ public double getPerimeter() { return perimeter; } } /** * Calculate area and perimeter length of a polygon. * * Uses current projection; units are that of the projected coordinates. * * @param nodes the list of nodes representing the polygon * @return area and perimeter */ public static AreaAndPerimeter getAreaAndPerimeter(List nodes) { return getAreaAndPerimeter(nodes, null); } /** * Calculate area and perimeter length of a polygon in the given projection. * * @param nodes the list of nodes representing the polygon * @param projection the projection to use for the calculation, {@code null} defaults to {@link Main#getProjection()} * @return area and perimeter */ public static AreaAndPerimeter getAreaAndPerimeter(List nodes, Projection projection) { CheckParameterUtil.ensureParameterNotNull(nodes, "nodes"); double area = 0; double perimeter = 0; Projection useProjection = projection == null ? Main.getProjection() : projection; if (!nodes.isEmpty()) { boolean closed = nodes.get(0) == nodes.get(nodes.size() - 1); int numSegments = closed ? nodes.size() - 1 : nodes.size(); EastNorth p1 = nodes.get(0).getEastNorth(useProjection); for (int i = 1; i <= numSegments; i++) { final Node node = nodes.get(i == numSegments ? 0 : i); final EastNorth p2 = node.getEastNorth(useProjection); if (p1 != null && p2 != null) { area += p1.east() * p2.north() - p2.east() * p1.north(); perimeter += p1.distance(p2); } p1 = p2; } } return new AreaAndPerimeter(Math.abs(area) / 2, perimeter); } }