source: josm/trunk/src/org/openstreetmap/josm/data/projection/proj/TransverseMercator.java@ 9419

Last change on this file since 9419 was 9139, checked in by bastiK, 8 years ago

see #12186 - more conservative bounds for transverse mercator

  • Property svn:eol-style set to native
File size: 7.5 KB
Line 
1// License: GPL. For details, see LICENSE file.
2package org.openstreetmap.josm.data.projection.proj;
3
4import static org.openstreetmap.josm.tools.I18n.tr;
5
6import org.openstreetmap.josm.data.Bounds;
7import org.openstreetmap.josm.data.projection.ProjectionConfigurationException;
8
9/**
10 * Transverse Mercator Projection (EPSG code 9807). This
11 * is a cylindrical projection, in which the cylinder has been rotated 90°.
12 * Instead of being tangent to the equator (or to an other standard latitude),
13 * it is tangent to a central meridian. Deformation are more important as we
14 * are going futher from the central meridian. The Transverse Mercator
15 * projection is appropriate for region wich have a greater extent north-south
16 * than east-west.
17 * <p>
18 *
19 * The elliptical equations used here are series approximations, and their accuracy
20 * decreases as points move farther from the central meridian of the projection.
21 * The forward equations here are accurate to a less than a mm &plusmn;10 degrees from
22 * the central meridian, a few mm &plusmn;15 degrees from the
23 * central meridian and a few cm &plusmn;20 degrees from the central meridian.
24 * The spherical equations are not approximations and should always give the
25 * correct values.
26 * <p>
27 *
28 * There are a number of versions of the transverse mercator projection
29 * including the Universal (UTM) and Modified (MTM) Transverses Mercator
30 * projections. In these cases the earth is divided into zones. For the UTM
31 * the zones are 6 degrees wide, numbered from 1 to 60 proceeding east from
32 * 180 degrees longitude, and between lats 84 degrees North and 80
33 * degrees South. The central meridian is taken as the center of the zone
34 * and the latitude of origin is the equator. A scale factor of 0.9996 and
35 * false easting of 500000m is used for all zones and a false northing of 10000000m
36 * is used for zones in the southern hemisphere.
37 * <p>
38 *
39 * NOTE: formulas used below are not those of Snyder, but rather those
40 * from the {@code proj4} package of the USGS survey, which
41 * have been reproduced verbatim. USGS work is acknowledged here.
42 * <p>
43 *
44 * This class has been derived from the implementation of the Geotools project;
45 * git 8cbf52d, org.geotools.referencing.operation.projection.TransverseMercator
46 * at the time of migration.
47 * <p>
48 *
49 * <b>References:</b>
50 * <ul>
51 * <li> Proj-4.4.6 available at <A HREF="http://www.remotesensing.org/proj">www.remotesensing.org/proj</A><br>
52 * Relevent files are: {@code PJ_tmerc.c}, {@code pj_mlfn.c}, {@code pj_fwd.c} and {@code pj_inv.c}.</li>
53 * <li> John P. Snyder (Map Projections - A Working Manual,
54 * U.S. Geological Survey Professional Paper 1395, 1987).</li>
55 * <li> "Coordinate Conversions and Transformations including Formulas",
56 * EPSG Guidence Note Number 7, Version 19.</li>
57 * </ul>
58 *
59 * @author André Gosselin
60 * @author Martin Desruisseaux (PMO, IRD)
61 * @author Rueben Schulz
62 *
63 * @see <A HREF="http://mathworld.wolfram.com/MercatorProjection.html">Transverse Mercator projection on MathWorld</A>
64 * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/transverse_mercator.html">"Transverse_Mercator" on RemoteSensing.org</A>
65 */
66public class TransverseMercator extends AbstractProj {
67
68 /**
69 * Contants used for the forward and inverse transform for the eliptical
70 * case of the Transverse Mercator.
71 */
72 private static final double FC1 = 1.00000000000000000000000, // 1/1
73 FC2 = 0.50000000000000000000000, // 1/2
74 FC3 = 0.16666666666666666666666, // 1/6
75 FC4 = 0.08333333333333333333333, // 1/12
76 FC5 = 0.05000000000000000000000, // 1/20
77 FC6 = 0.03333333333333333333333, // 1/30
78 FC7 = 0.02380952380952380952380, // 1/42
79 FC8 = 0.01785714285714285714285; // 1/56
80
81 /**
82 * Maximum difference allowed when comparing real numbers.
83 */
84 private static final double EPSILON = 1E-6;
85
86 /**
87 * A derived quantity of excentricity, computed by <code>e'² = (a²-b²)/b² = es/(1-es)</code>
88 * where <var>a</var> is the semi-major axis length and <var>b</var> is the semi-minor axis
89 * length.
90 */
91 private double eb2;
92
93 /**
94 * Latitude of origin in <u>radians</u>. Default value is 0, the equator.
95 * This is called '<var>phi0</var>' in Snyder.
96 * <p>
97 * <strong>Consider this field as final</strong>. It is not final only
98 * because some classes need to modify it at construction time.
99 */
100 protected double latitudeOfOrigin;
101
102 /**
103 * Meridian distance at the {@code latitudeOfOrigin}.
104 * Used for calculations for the ellipsoid.
105 */
106 private double ml0;
107
108 @Override
109 public String getName() {
110 return tr("Transverse Mercator");
111 }
112
113 @Override
114 public String getProj4Id() {
115 return "tmerc";
116 }
117
118 @Override
119 public void initialize(ProjParameters params) throws ProjectionConfigurationException {
120 super.initialize(params);
121 eb2 = params.ellps.eb2;
122 latitudeOfOrigin = params.lat0 == null ? 0 : Math.toRadians(params.lat0);
123 ml0 = mlfn(latitudeOfOrigin, Math.sin(latitudeOfOrigin), Math.cos(latitudeOfOrigin));
124 }
125
126 @Override
127 public double[] project(double y, double x) {
128 x = normalizeLon(x);
129 double sinphi = Math.sin(y);
130 double cosphi = Math.cos(y);
131
132 double t = (Math.abs(cosphi) > EPSILON) ? sinphi/cosphi : 0;
133 t *= t;
134 double al = cosphi*x;
135 double als = al*al;
136 al /= Math.sqrt(1.0 - e2 * sinphi*sinphi);
137 double n = eb2 * cosphi*cosphi;
138
139 /* NOTE: meridinal distance at latitudeOfOrigin is always 0 */
140 y = (mlfn(y, sinphi, cosphi) - ml0 +
141 sinphi * al * x *
142 FC2 * (1.0 +
143 FC4 * als * (5.0 - t + n*(9.0 + 4.0*n) +
144 FC6 * als * (61.0 + t * (t - 58.0) + n*(270.0 - 330.0*t) +
145 FC8 * als * (1385.0 + t * (t*(543.0 - t) - 3111.0))))));
146
147 x = al*(FC1 + FC3 * als*(1.0 - t + n +
148 FC5 * als * (5.0 + t*(t - 18.0) + n*(14.0 - 58.0*t) +
149 FC7 * als * (61.0+ t*(t*(179.0 - t) - 479.0)))));
150
151 return new double[] {x, y};
152 }
153
154 @Override
155 public double[] invproject(double x, double y) {
156 double phi = inv_mlfn(ml0 + y);
157
158 if (Math.abs(phi) >= Math.PI/2) {
159 y = y < 0.0 ? -(Math.PI/2) : (Math.PI/2);
160 x = 0.0;
161 } else {
162 double sinphi = Math.sin(phi);
163 double cosphi = Math.cos(phi);
164 double t = (Math.abs(cosphi) > EPSILON) ? sinphi/cosphi : 0.0;
165 double n = eb2 * cosphi*cosphi;
166 double con = 1.0 - e2 * sinphi*sinphi;
167 double d = x * Math.sqrt(con);
168 con *= t;
169 t *= t;
170 double ds = d*d;
171
172 y = phi - (con*ds / (1.0 - e2)) *
173 FC2 * (1.0 - ds *
174 FC4 * (5.0 + t*(3.0 - 9.0*n) + n*(1.0 - 4*n) - ds *
175 FC6 * (61.0 + t*(90.0 - 252.0*n + 45.0*t) + 46.0*n - ds *
176 FC8 * (1385.0 + t*(3633.0 + t*(4095.0 + 1574.0*t))))));
177
178 x = d*(FC1 - ds * FC3 * (1.0 + 2.0*t + n -
179 ds*FC5*(5.0 + t*(28.0 + 24* t + 8.0*n) + 6.0*n -
180 ds*FC7*(61.0 + t*(662.0 + t*(1320.0 + 720.0*t))))))/cosphi;
181 }
182 return new double[] {y, x};
183 }
184
185 @Override
186 public Bounds getAlgorithmBounds() {
187 return new Bounds(-89, -7, 89, 7, false);
188 }
189}
Note: See TracBrowser for help on using the repository browser.