source: josm/trunk/src/org/openstreetmap/josm/data/projection/proj/LambertAzimuthalEqualArea.java@ 10001

Last change on this file since 10001 was 9998, checked in by Don-vip, 8 years ago

sonar - remove fields used as local variables only

  • Property svn:eol-style set to native
File size: 9.2 KB
Line 
1// License: GPL. For details, see LICENSE file.
2package org.openstreetmap.josm.data.projection.proj;
3
4import static org.openstreetmap.josm.tools.I18n.tr;
5
6import org.openstreetmap.josm.data.Bounds;
7import org.openstreetmap.josm.data.projection.ProjectionConfigurationException;
8
9/**
10 * Lambert Azimuthal Equal Area (EPSG code 9820).
11 * <p>
12 * This class has been derived from the implementation of the Geotools project;
13 * git 8cbf52d, org.geotools.referencing.operation.projection.LambertAzimuthalEqualArea
14 * at the time of migration.
15 * <p>
16 * <b>References:</b>
17 * <ul>
18 * <li> A. Annoni, C. Luzet, E.Gubler and J. Ihde - Map Projections for Europe</li>
19 * <li> John P. Snyder (Map Projections - A Working Manual,
20 * U.S. Geological Survey Professional Paper 1395)</li>
21 * </ul>
22 *
23 * @author Gerald Evenden (for original code in Proj4)
24 * @author Beate Stollberg
25 * @author Martin Desruisseaux
26 *
27 * @see <A HREF="http://mathworld.wolfram.com/LambertAzimuthalEqual-AreaProjection.html">Lambert Azimuthal Equal-Area Projection</A>
28 * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/lambert_azimuthal_equal_area.html">"Lambert_Azimuthal_Equal_Area"</A>
29 */
30public class LambertAzimuthalEqualArea extends AbstractProj {
31
32 /** Maximum difference allowed when comparing real numbers. */
33 private static final double EPSILON = 1E-7;
34
35 /** Epsilon for the comparison of small quantities. */
36 private static final double FINE_EPSILON = 1E-10;
37
38 /** Epsilon for the comparison of latitudes. */
39 private static final double EPSILON_LATITUDE = 1E-10;
40
41 /** Constants for authalic latitude. */
42 private static final double P00 = 0.33333333333333333333;
43 private static final double P01 = 0.17222222222222222222;
44 private static final double P02 = 0.10257936507936507936;
45 private static final double P10 = 0.06388888888888888888;
46 private static final double P11 = 0.06640211640211640211;
47 private static final double P20 = 0.01641501294219154443;
48
49 /** The projection mode. */
50 private enum Mode { OBLIQUE, EQUATORIAL, NORTH_POLE, SOUTH_POLE }
51
52 /** The projection mode for this particular instance. */
53 private Mode mode;
54
55 /** Constant parameters. */
56 private double sinb1, cosb1, xmf, ymf, qp, dd, rq;
57
58 /** Coefficients for authalic latitude. */
59 private double aPA0, aPA1, aPA2;
60
61 private double latitudeOfOrigin;
62
63 @Override
64 public String getName() {
65 return tr("Lambert Azimuthal Equal Area");
66 }
67
68 @Override
69 public String getProj4Id() {
70 return "laea";
71 }
72
73 @Override
74 public void initialize(ProjParameters params) throws ProjectionConfigurationException {
75 super.initialize(params);
76
77 if (params.lat0 == null)
78 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lat_0"));
79
80 latitudeOfOrigin = Math.toRadians(params.lat0);
81 /*
82 * Detects the mode (oblique, etc.).
83 */
84 final double t = Math.abs(latitudeOfOrigin);
85 if (Math.abs(t - Math.PI/2) < EPSILON_LATITUDE) {
86 mode = latitudeOfOrigin < 0.0 ? Mode.SOUTH_POLE : Mode.NORTH_POLE;
87 } else if (Math.abs(t) < EPSILON_LATITUDE) {
88 mode = Mode.EQUATORIAL;
89 } else {
90 mode = Mode.OBLIQUE;
91 }
92 /*
93 * Computes the constants for authalic latitude.
94 */
95 final double es2 = e2 * e2;
96 final double es3 = e2 * es2;
97 aPA0 = P02 * es3 + P01 * es2 + P00 * e2;
98 aPA1 = P11 * es3 + P10 * es2;
99 aPA2 = P20 * es3;
100
101 final double sinphi;
102 qp = qsfn(1);
103 rq = Math.sqrt(0.5 * qp);
104 sinphi = Math.sin(latitudeOfOrigin);
105 sinb1 = qsfn(sinphi) / qp;
106 cosb1 = Math.sqrt(1.0 - sinb1 * sinb1);
107 switch (mode) {
108 case NORTH_POLE: // Fall through
109 case SOUTH_POLE: {
110 dd = 1.0;
111 xmf = ymf = rq;
112 break;
113 }
114 case EQUATORIAL: {
115 dd = 1.0 / rq;
116 xmf = 1.0;
117 ymf = 0.5 * qp;
118 break;
119 }
120 case OBLIQUE: {
121 dd = Math.cos(latitudeOfOrigin) /
122 (Math.sqrt(1.0 - e2 * sinphi * sinphi) * rq * cosb1);
123 xmf = rq * dd;
124 ymf = rq / dd;
125 break;
126 }
127 default: {
128 throw new AssertionError(mode);
129 }
130 }
131 }
132
133 @Override
134 public double[] project(final double phi, final double lambda) {
135 final double coslam = Math.cos(lambda);
136 final double sinlam = Math.sin(lambda);
137 final double sinphi = Math.sin(phi);
138 double q = qsfn(sinphi);
139 final double sinb, cosb, b, c, x, y;
140 switch (mode) {
141 case OBLIQUE: {
142 sinb = q / qp;
143 cosb = Math.sqrt(1.0 - sinb * sinb);
144 c = 1.0 + sinb1 * sinb + cosb1 * cosb * coslam;
145 b = Math.sqrt(2.0 / c);
146 y = ymf * b * (cosb1 * sinb - sinb1 * cosb * coslam);
147 x = xmf * b * cosb * sinlam;
148 break;
149 }
150 case EQUATORIAL: {
151 sinb = q / qp;
152 cosb = Math.sqrt(1.0 - sinb * sinb);
153 c = 1.0 + cosb * coslam;
154 b = Math.sqrt(2.0 / c);
155 y = ymf * b * sinb;
156 x = xmf * b * cosb * sinlam;
157 break;
158 }
159 case NORTH_POLE: {
160 c = (Math.PI / 2) + phi;
161 q = qp - q;
162 if (q >= 0.0) {
163 b = Math.sqrt(q);
164 x = b * sinlam;
165 y = coslam * -b;
166 } else {
167 x = y = 0.;
168 }
169 break;
170 }
171 case SOUTH_POLE: {
172 c = phi - (Math.PI / 2);
173 q = qp + q;
174 if (q >= 0.0) {
175 b = Math.sqrt(q);
176 x = b * sinlam;
177 y = coslam * +b;
178 } else {
179 x = y = 0.;
180 }
181 break;
182 }
183 default: {
184 throw new AssertionError(mode);
185 }
186 }
187 if (Math.abs(c) < EPSILON_LATITUDE) {
188 return new double[] {0, 0}; // this is an error, we should handle it somehow
189 }
190 return new double[] {x, y};
191 }
192
193 @Override
194 public double[] invproject(double x, double y) {
195 final double lambda, phi;
196 switch (mode) {
197 case EQUATORIAL: // Fall through
198 case OBLIQUE: {
199 x /= dd;
200 y *= dd;
201 final double rho = Math.hypot(x, y);
202 if (rho < FINE_EPSILON) {
203 lambda = 0.0;
204 phi = latitudeOfOrigin;
205 } else {
206 double sCe, cCe, ab;
207 sCe = 2.0 * Math.asin(0.5 * rho / rq);
208 cCe = Math.cos(sCe);
209 sCe = Math.sin(sCe);
210 x *= sCe;
211 if (mode == Mode.OBLIQUE) {
212 ab = cCe * sinb1 + y * sCe * cosb1 / rho;
213 y = rho * cosb1 * cCe - y * sinb1 * sCe;
214 } else {
215 ab = y * sCe / rho;
216 y = rho * cCe;
217 }
218 lambda = Math.atan2(x, y);
219 phi = authlat(Math.asin(ab));
220 }
221 break;
222 }
223 case NORTH_POLE: {
224 y = -y;
225 // Fall through
226 }
227 case SOUTH_POLE: {
228 final double q = x*x + y*y;
229 if (q == 0) {
230 lambda = 0.;
231 phi = latitudeOfOrigin;
232 } else {
233 double ab = 1.0 - q / qp;
234 if (mode == Mode.SOUTH_POLE) {
235 ab = -ab;
236 }
237 lambda = Math.atan2(x, y);
238 phi = authlat(Math.asin(ab));
239 }
240 break;
241 }
242 default: {
243 throw new AssertionError(mode);
244 }
245 }
246 return new double[] {phi, lambda};
247 }
248
249
250 /**
251 * Calculates <var>q</var>, Snyder equation (3-12)
252 *
253 * @param sinphi sin of the latitude <var>q</var> is calculated for.
254 * @return <var>q</var> from Snyder equation (3-12).
255 */
256 private double qsfn(final double sinphi) {
257 if (e >= EPSILON) {
258 final double con = e * sinphi;
259 return (1.0 - e2) * (sinphi / (1.0 - con*con) -
260 (0.5 / e) * Math.log((1.0 - con) / (1.0 + con)));
261 } else {
262 return sinphi + sinphi;
263 }
264 }
265
266 /**
267 * Determines latitude from authalic latitude.
268 * @param beta authalic latitude
269 * @return corresponding latitude
270 */
271 private double authlat(final double beta) {
272 final double t = beta + beta;
273 return beta + aPA0 * Math.sin(t) + aPA1 * Math.sin(t+t) + aPA2 * Math.sin(t+t+t);
274 }
275
276 @Override
277 public Bounds getAlgorithmBounds() {
278 return new Bounds(-89, -174, 89, 174, false);
279 }
280}
Note: See TracBrowser for help on using the repository browser.