source: josm/trunk/src/org/openstreetmap/josm/data/projection/Ellipsoid.java@ 2017

Last change on this file since 2017 was 1929, checked in by Gubaer, 15 years ago

applied #3214: patch by pieren: new projections for the French cadastre

File size: 5.4 KB
Line 
1/*
2 * Import from fr.geo.convert package, a geographic coordinates converter.
3 * (http://www.i3s.unice.fr/~johan/gps/)
4 * License: GPL. For details, see LICENSE file.
5 * Copyright (C) 2002 Johan Montagnat (johan@creatis.insa-lyon.fr)
6 */
7
8package org.openstreetmap.josm.data.projection;
9
10/**
11 * the reference ellipsoids
12 */
13class Ellipsoid {
14 /**
15 * Clarke's ellipsoid (NTF system)
16 */
17 public static final Ellipsoid clarke = new Ellipsoid(6378249.2, 6356515.0);
18 /**
19 * Hayford's ellipsoid (ED50 system)
20 */
21 public static final Ellipsoid hayford =
22 new Ellipsoid(6378388.0, 6356911.9461);
23 /**
24 * WGS84 ellipsoid
25 */
26 public static final Ellipsoid GRS80 = new Ellipsoid(6378137.0, 6356752.314);
27
28 /**
29 * half long axis
30 */
31 public final double a;
32 /**
33 * half short axis
34 */
35 public final double b;
36 /**
37 * first eccentricity
38 */
39 public final double e;
40 /**
41 * first eccentricity squared
42 */
43 public final double e2;
44
45 /**
46 * square of the second eccentricity
47 */
48 public final double eb2;
49
50 /**
51 * create a new ellipsoid and precompute its parameters
52 *
53 * @param a ellipsoid long axis (in meters)
54 * @param b ellipsoid short axis (in meters)
55 */
56 public Ellipsoid(double a, double b) {
57 this.a = a;
58 this.b = b;
59 e2 = (a*a - b*b) / (a*a);
60 e = Math.sqrt(e2);
61 eb2 = e2 / (1.0 - e2);
62 }
63
64 /**
65 * Returns the <i>radius of curvature in the prime vertical</i>
66 * for this reference ellipsoid at the specified latitude.
67 *
68 * @param phi The local latitude (radians).
69 * @return The radius of curvature in the prime vertical (meters).
70 */
71 public double verticalRadiusOfCurvature(final double phi) {
72 return a / Math.sqrt(1.0 - (e2 * sqr(Math.sin(phi))));
73 }
74
75 private static double sqr(final double x) {
76 return x * x;
77 }
78
79 /**
80 * Returns the meridional arc, the true meridional distance on the
81 * ellipsoid from the equator to the specified latitude, in meters.
82 *
83 * @param phi The local latitude (in radians).
84 * @return The meridional arc (in meters).
85 */
86 public double meridionalArc(final double phi) {
87 final double sin2Phi = Math.sin(2.0 * phi);
88 final double sin4Phi = Math.sin(4.0 * phi);
89 final double sin6Phi = Math.sin(6.0 * phi);
90 final double sin8Phi = Math.sin(8.0 * phi);
91 // TODO . calculate 'f'
92 //double f = 1.0 / 298.257222101; // GRS80
93 double f = 1.0 / 298.257223563; // WGS84
94 final double n = f / (2.0 - f);
95 final double n2 = n * n;
96 final double n3 = n2 * n;
97 final double n4 = n3 * n;
98 final double n5 = n4 * n;
99 final double n1n2 = n - n2;
100 final double n2n3 = n2 - n3;
101 final double n3n4 = n3 - n4;
102 final double n4n5 = n4 - n5;
103 final double ap = a * (1.0 - n + (5.0 / 4.0) * (n2n3) + (81.0 / 64.0) * (n4n5));
104 final double bp = (3.0 / 2.0) * a * (n1n2 + (7.0 / 8.0) * (n3n4) + (55.0 / 64.0) * n5);
105 final double cp = (15.0 / 16.0) * a * (n2n3 + (3.0 / 4.0) * (n4n5));
106 final double dp = (35.0 / 48.0) * a * (n3n4 + (11.0 / 16.0) * n5);
107 final double ep = (315.0 / 512.0) * a * (n4n5);
108 return ap * phi - bp * sin2Phi + cp * sin4Phi - dp * sin6Phi + ep * sin8Phi;
109 }
110
111 /**
112 * Returns the <i>radius of curvature in the meridian<i>
113 * for this reference ellipsoid at the specified latitude.
114 *
115 * @param phi The local latitude (in radians).
116 * @return The radius of curvature in the meridian (in meters).
117 */
118 public double meridionalRadiusOfCurvature(final double phi) {
119 return verticalRadiusOfCurvature(phi)
120 / (1.0 + eb2 * sqr(Math.cos(phi)));
121 }
122
123 /**
124 * Returns isometric latitude of phi on given first eccentricity (e)
125 * @param phi The local latitude (radians).
126 * @return isometric latitude of phi on first eccentricity (e)
127 */
128 public double latitudeIsometric(double phi, double e) {
129 double v1 = 1-e*Math.sin(phi);
130 double v2 = 1+e*Math.sin(phi);
131 return Math.log(Math.tan(Math.PI/4+phi/2)*Math.pow(v1/v2,e/2));
132 }
133
134 /**
135 * Returns isometric latitude of phi on first eccentricity (e)
136 * @param phi The local latitude (radians).
137 * @return isometric latitude of phi on first eccentricity (e)
138 */
139 public double latitudeIsometric(double phi) {
140 double v1 = 1-e*Math.sin(phi);
141 double v2 = 1+e*Math.sin(phi);
142 return Math.log(Math.tan(Math.PI/4+phi/2)*Math.pow(v1/v2,e/2));
143 }
144
145 /*
146 * Returns geographic latitude of isometric latitude of first eccentricity (e)
147 * and epsilon precision
148 */
149 public double latitude(double latIso, double e, double epsilon) {
150 double lat0 = 2*Math.atan(Math.exp(latIso))-Math.PI/2;
151 double lati = lat0;
152 double lati1 = 1.0; // random value to start the iterative processus
153 while(Math.abs(lati1-lati)>=epsilon) {
154 lati = lati1;
155 double v1 = 1+e*Math.sin(lati);
156 double v2 = 1-e*Math.sin(lati);
157 lati1 = 2*Math.atan(Math.pow(v1/v2,e/2)*Math.exp(latIso))-Math.PI/2;
158 }
159 return lati1;
160 }
161}
162
163
164
Note: See TracBrowser for help on using the repository browser.