source: josm/trunk/src/org/openstreetmap/josm/data/projection/proj/TransverseMercator.java@ 11555

Last change on this file since 11555 was 11555, checked in by Don-vip, 7 years ago

see #14346 - checkstyle

  • Property svn:eol-style set to native
File size: 8.6 KB
Line 
1// License: GPL. For details, see LICENSE file.
2package org.openstreetmap.josm.data.projection.proj;
3
4import static org.openstreetmap.josm.tools.I18n.tr;
5
6import org.openstreetmap.josm.data.Bounds;
7import org.openstreetmap.josm.data.projection.ProjectionConfigurationException;
8import org.openstreetmap.josm.tools.CheckParameterUtil;
9
10/**
11 * Transverse Mercator Projection (EPSG code 9807). This
12 * is a cylindrical projection, in which the cylinder has been rotated 90°.
13 * Instead of being tangent to the equator (or to an other standard latitude),
14 * it is tangent to a central meridian. Deformation are more important as we
15 * are going futher from the central meridian. The Transverse Mercator
16 * projection is appropriate for region wich have a greater extent north-south
17 * than east-west.
18 * <p>
19 *
20 * The elliptical equations used here are series approximations, and their accuracy
21 * decreases as points move farther from the central meridian of the projection.
22 * The forward equations here are accurate to a less than a mm &plusmn;10 degrees from
23 * the central meridian, a few mm &plusmn;15 degrees from the
24 * central meridian and a few cm &plusmn;20 degrees from the central meridian.
25 * The spherical equations are not approximations and should always give the
26 * correct values.
27 * <p>
28 *
29 * There are a number of versions of the transverse mercator projection
30 * including the Universal (UTM) and Modified (MTM) Transverses Mercator
31 * projections. In these cases the earth is divided into zones. For the UTM
32 * the zones are 6 degrees wide, numbered from 1 to 60 proceeding east from
33 * 180 degrees longitude, and between lats 84 degrees North and 80
34 * degrees South. The central meridian is taken as the center of the zone
35 * and the latitude of origin is the equator. A scale factor of 0.9996 and
36 * false easting of 500000m is used for all zones and a false northing of 10000000m
37 * is used for zones in the southern hemisphere.
38 * <p>
39 *
40 * NOTE: formulas used below are not those of Snyder, but rather those
41 * from the {@code proj4} package of the USGS survey, which
42 * have been reproduced verbatim. USGS work is acknowledged here.
43 * <p>
44 *
45 * This class has been derived from the implementation of the Geotools project;
46 * git 8cbf52d, org.geotools.referencing.operation.projection.TransverseMercator
47 * at the time of migration.
48 * <p>
49 * The non-standard parameter <code>gamma</code> has been added as a method
50 * to rotate the projected coordinates by a certain angle (clockwise, see
51 * {@link ObliqueMercator}).
52 * <p>
53 * <b>References:</b>
54 * <ul>
55 * <li> Proj-4.4.6 available at <A HREF="http://www.remotesensing.org/proj">www.remotesensing.org/proj</A><br>
56 * Relevent files are: {@code PJ_tmerc.c}, {@code pj_mlfn.c}, {@code pj_fwd.c} and {@code pj_inv.c}.</li>
57 * <li> John P. Snyder (Map Projections - A Working Manual,
58 * U.S. Geological Survey Professional Paper 1395, 1987).</li>
59 * <li> "Coordinate Conversions and Transformations including Formulas",
60 * EPSG Guidence Note Number 7, Version 19.</li>
61 * </ul>
62 *
63 * @author André Gosselin
64 * @author Martin Desruisseaux (PMO, IRD)
65 * @author Rueben Schulz
66 *
67 * @see <A HREF="http://mathworld.wolfram.com/MercatorProjection.html">Transverse Mercator projection on MathWorld</A>
68 * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/transverse_mercator.html">"Transverse_Mercator" on RemoteSensing.org</A>
69 */
70public class TransverseMercator extends AbstractProj {
71
72 /**
73 * Contants used for the forward and inverse transform for the eliptical
74 * case of the Transverse Mercator.
75 */
76 private static final double FC1 = 1.00000000000000000000000, // 1/1
77 FC2 = 0.50000000000000000000000, // 1/2
78 FC3 = 0.16666666666666666666666, // 1/6
79 FC4 = 0.08333333333333333333333, // 1/12
80 FC5 = 0.05000000000000000000000, // 1/20
81 FC6 = 0.03333333333333333333333, // 1/30
82 FC7 = 0.02380952380952380952380, // 1/42
83 FC8 = 0.01785714285714285714285; // 1/56
84
85 /**
86 * Maximum difference allowed when comparing real numbers.
87 */
88 private static final double EPSILON = 1E-6;
89
90 /**
91 * A derived quantity of excentricity, computed by <code>e'² = (a²-b²)/b² = es/(1-es)</code>
92 * where <var>a</var> is the semi-major axis length and <var>b</var> is the semi-minor axis
93 * length.
94 */
95 private double eb2;
96
97 /**
98 * Latitude of origin in <u>radians</u>. Default value is 0, the equator.
99 * This is called '<var>phi0</var>' in Snyder.
100 * <p>
101 * <strong>Consider this field as final</strong>. It is not final only
102 * because some classes need to modify it at construction time.
103 */
104 protected double latitudeOfOrigin;
105
106 /**
107 * Meridian distance at the {@code latitudeOfOrigin}.
108 * Used for calculations for the ellipsoid.
109 */
110 private double ml0;
111
112 /**
113 * The rectified bearing of the central line, in radians.
114 */
115 protected double rectifiedGridAngle;
116
117 /**
118 * Sine and Cosine values for the coordinate system rotation angle
119 */
120 private double sinrot, cosrot;
121
122 @Override
123 public String getName() {
124 return tr("Transverse Mercator");
125 }
126
127 @Override
128 public String getProj4Id() {
129 return "tmerc";
130 }
131
132 @Override
133 public void initialize(ProjParameters params) throws ProjectionConfigurationException {
134 super.initialize(params);
135 CheckParameterUtil.ensureParameterNotNull(params, "params");
136 CheckParameterUtil.ensureParameterNotNull(params.ellps, "params.ellps");
137 eb2 = params.ellps.eb2;
138 latitudeOfOrigin = params.lat0 == null ? 0 : Math.toRadians(params.lat0);
139 ml0 = mlfn(latitudeOfOrigin, Math.sin(latitudeOfOrigin), Math.cos(latitudeOfOrigin));
140
141 if (params.gamma != null) {
142 rectifiedGridAngle = Math.toRadians(params.gamma);
143 } else {
144 rectifiedGridAngle = 0.0;
145 }
146 sinrot = Math.sin(rectifiedGridAngle);
147 cosrot = Math.cos(rectifiedGridAngle);
148
149 }
150
151 @Override
152 public double[] project(double y, double x) {
153 double sinphi = Math.sin(y);
154 double cosphi = Math.cos(y);
155 double u, v;
156
157 double t = (Math.abs(cosphi) > EPSILON) ? sinphi/cosphi : 0;
158 t *= t;
159 double al = cosphi*x;
160 double als = al*al;
161 al /= Math.sqrt(1.0 - e2 * sinphi*sinphi);
162 double n = eb2 * cosphi*cosphi;
163
164 /* NOTE: meridinal distance at latitudeOfOrigin is always 0 */
165 y = mlfn(y, sinphi, cosphi) - ml0 +
166 sinphi * al * x *
167 FC2 * (1.0 +
168 FC4 * als * (5.0 - t + n*(9.0 + 4.0*n) +
169 FC6 * als * (61.0 + t * (t - 58.0) + n*(270.0 - 330.0*t) +
170 FC8 * als * (1385.0 + t * (t*(543.0 - t) - 3111.0)))));
171
172 x = al*(FC1 + FC3 * als*(1.0 - t + n +
173 FC5 * als * (5.0 + t*(t - 18.0) + n*(14.0 - 58.0*t) +
174 FC7 * als * (61.0+ t*(t*(179.0 - t) - 479.0)))));
175
176 u = y;
177 v = x;
178 x = v * cosrot + u * sinrot;
179 y = u * cosrot - v * sinrot;
180
181 return new double[] {x, y};
182 }
183
184 @Override
185 public double[] invproject(double x, double y) {
186 double v = x * cosrot - y * sinrot;
187 double u = y * cosrot + x * sinrot;
188 x = v;
189 y = u;
190
191 double phi = invMlfn(ml0 + y);
192
193 if (Math.abs(phi) >= Math.PI/2) {
194 y = y < 0.0 ? -(Math.PI/2) : (Math.PI/2);
195 x = 0.0;
196 } else {
197 double sinphi = Math.sin(phi);
198 double cosphi = Math.cos(phi);
199 double t = (Math.abs(cosphi) > EPSILON) ? sinphi/cosphi : 0.0;
200 double n = eb2 * cosphi*cosphi;
201 double con = 1.0 - e2 * sinphi*sinphi;
202 double d = x * Math.sqrt(con);
203 con *= t;
204 t *= t;
205 double ds = d*d;
206
207 y = phi - (con*ds / (1.0 - e2)) *
208 FC2 * (1.0 - ds *
209 FC4 * (5.0 + t*(3.0 - 9.0*n) + n*(1.0 - 4*n) - ds *
210 FC6 * (61.0 + t*(90.0 - 252.0*n + 45.0*t) + 46.0*n - ds *
211 FC8 * (1385.0 + t*(3633.0 + t*(4095.0 + 1574.0*t))))));
212
213 x = d*(FC1 - ds * FC3 * (1.0 + 2.0*t + n -
214 ds*FC5*(5.0 + t*(28.0 + 24* t + 8.0*n) + 6.0*n -
215 ds*FC7*(61.0 + t*(662.0 + t*(1320.0 + 720.0*t))))))/cosphi;
216 }
217 return new double[] {y, x};
218 }
219
220 @Override
221 public Bounds getAlgorithmBounds() {
222 return new Bounds(-89, -7, 89, 7, false);
223 }
224}
Note: See TracBrowser for help on using the repository browser.